Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.01236
Cited By
Adversarial Machine Learning at Scale
4 November 2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Machine Learning at Scale"
50 / 530 papers shown
Title
Zeroth-Order Regularized Optimization (ZORO): Approximately Sparse Gradients and Adaptive Sampling
HanQin Cai
Daniel McKenzie
W. Yin
Zhenliang Zhang
38
48
0
29 Mar 2020
Adversarial Robustness: From Self-Supervised Pre-Training to Fine-Tuning
Tianlong Chen
Sijia Liu
Shiyu Chang
Yu Cheng
Lisa Amini
Zhangyang Wang
AAML
18
246
0
28 Mar 2020
DaST: Data-free Substitute Training for Adversarial Attacks
Mingyi Zhou
Jing Wu
Yipeng Liu
Shuaicheng Liu
Ce Zhu
17
142
0
28 Mar 2020
DP-Net: Dynamic Programming Guided Deep Neural Network Compression
Dingcheng Yang
Wenjian Yu
Ao Zhou
Haoyuan Mu
G. Yao
Xiaoyi Wang
13
6
0
21 Mar 2020
Quantum noise protects quantum classifiers against adversaries
Yuxuan Du
Min-hsiu Hsieh
Tongliang Liu
Dacheng Tao
Nana Liu
AAML
22
110
0
20 Mar 2020
ConAML: Constrained Adversarial Machine Learning for Cyber-Physical Systems
Jiangnan Li
Yingyuan Yang
Jinyuan Stella Sun
K. Tomsovic
Jin Young Lee
AAML
23
52
0
12 Mar 2020
An Empirical Evaluation on Robustness and Uncertainty of Regularization Methods
Sanghyuk Chun
Seong Joon Oh
Sangdoo Yun
Dongyoon Han
Junsuk Choe
Y. Yoo
AAML
OOD
342
53
0
09 Mar 2020
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models
Raphaël Dang-Nhu
Gagandeep Singh
Pavol Bielik
Martin Vechev
AI4TS
AAML
36
20
0
08 Mar 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
161
113
0
05 Mar 2020
Deep Neural Network Perception Models and Robust Autonomous Driving Systems
M. Shafiee
Ahmadreza Jeddi
Amir Nazemi
Paul Fieguth
A. Wong
OOD
25
15
0
04 Mar 2020
Analyzing Accuracy Loss in Randomized Smoothing Defenses
Yue Gao
Harrison Rosenberg
Kassem Fawaz
S. Jha
Justin Hsu
AAML
19
6
0
03 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
58
63
0
02 Mar 2020
Adversarial Ranking Attack and Defense
Mo Zhou
Zhenxing Niu
Le Wang
Qilin Zhang
G. Hua
36
38
0
26 Feb 2020
FR-Train: A Mutual Information-Based Approach to Fair and Robust Training
Yuji Roh
Kangwook Lee
Steven Euijong Whang
Changho Suh
18
78
0
24 Feb 2020
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Zou
FAtt
TDI
25
108
0
23 Feb 2020
Real-Time Detectors for Digital and Physical Adversarial Inputs to Perception Systems
Y. Kantaros
Taylor J. Carpenter
Kaustubh Sridhar
Yahan Yang
Insup Lee
James Weimer
AAML
17
12
0
23 Feb 2020
Non-Intrusive Detection of Adversarial Deep Learning Attacks via Observer Networks
K. Sivamani
R. Sahay
Aly El Gamal
AAML
4
3
0
22 Feb 2020
Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition
Ziwen He
Wei Wang
Jing Dong
Tieniu Tan
AAML
22
23
0
22 Feb 2020
Automatic Shortcut Removal for Self-Supervised Representation Learning
Matthias Minderer
Olivier Bachem
N. Houlsby
Michael Tschannen
SSL
13
73
0
20 Feb 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
A. Madry
AAML
104
820
0
19 Feb 2020
Variational Encoder-based Reliable Classification
Chitresh Bhushan
Zhaoyuan Yang
Nurali Virani
N. Iyer
DRL
13
5
0
19 Feb 2020
Mind Your Weight(s): A Large-scale Study on Insufficient Machine Learning Model Protection in Mobile Apps
Zhichuang Sun
Ruimin Sun
Long Lu
Alan Mislove
31
78
0
18 Feb 2020
CAT: Customized Adversarial Training for Improved Robustness
Minhao Cheng
Qi Lei
Pin-Yu Chen
Inderjit Dhillon
Cho-Jui Hsieh
OOD
AAML
27
114
0
17 Feb 2020
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
19
28
0
13 Feb 2020
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
21
115
0
13 Feb 2020
Over-the-Air Adversarial Flickering Attacks against Video Recognition Networks
Roi Pony
I. Naeh
Shie Mannor
AAML
13
51
0
12 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
483
0
12 Feb 2020
Attacking Optical Character Recognition (OCR) Systems with Adversarial Watermarks
Lu Chen
Wenyuan Xu
AAML
16
21
0
08 Feb 2020
Assessing the Adversarial Robustness of Monte Carlo and Distillation Methods for Deep Bayesian Neural Network Classification
Meet P. Vadera
Satya Narayan Shukla
B. Jalaeian
Benjamin M. Marlin
AAML
BDL
13
6
0
07 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
14
0
0
04 Feb 2020
Towards Sharper First-Order Adversary with Quantized Gradients
Zhuanghua Liu
Ivor W. Tsang
AAML
14
0
0
01 Feb 2020
When Wireless Security Meets Machine Learning: Motivation, Challenges, and Research Directions
Y. Sagduyu
Yi Shi
T. Erpek
William C. Headley
Bryse Flowers
G. Stantchev
Zhuo Lu
AAML
20
39
0
24 Jan 2020
Deep Representation Learning in Speech Processing: Challenges, Recent Advances, and Future Trends
S. Latif
R. Rana
Sara Khalifa
Raja Jurdak
Junaid Qadir
Björn W. Schuller
AI4TS
32
81
0
02 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
22
108
0
27 Dec 2019
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
31
66
0
19 Dec 2019
On-manifold Adversarial Data Augmentation Improves Uncertainty Calibration
Kanil Patel
William H. Beluch
Dan Zhang
Michael Pfeiffer
Bin Yang
UQCV
24
30
0
16 Dec 2019
AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds
Abdullah Hamdi
Sara Rojas
Ali K. Thabet
Guohao Li
AAML
3DPC
28
127
0
01 Dec 2019
Using Depth for Pixel-Wise Detection of Adversarial Attacks in Crowd Counting
Weizhe Liu
Mathieu Salzmann
Pascal Fua
AAML
27
9
0
26 Nov 2019
One Man's Trash is Another Man's Treasure: Resisting Adversarial Examples by Adversarial Examples
Chang Xiao
Changxi Zheng
AAML
25
19
0
25 Nov 2019
Enhancing Cross-task Black-Box Transferability of Adversarial Examples with Dispersion Reduction
Yantao Lu
Yunhan Jia
Jianyu Wang
Bai Li
Weiheng Chai
Lawrence Carin
Senem Velipasalar
AAML
16
81
0
22 Nov 2019
Defective Convolutional Networks
Tiange Luo
Tianle Cai
Mengxiao Zhang
Siyu Chen
Di He
Liwei Wang
AAML
27
3
0
19 Nov 2019
There is Limited Correlation between Coverage and Robustness for Deep Neural Networks
Yizhen Dong
Peixin Zhang
Jingyi Wang
Shuang Liu
Jun Sun
Jianye Hao
Xinyu Wang
Li Wang
J. Dong
Ting Dai
OOD
AAML
19
32
0
14 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
15
104
0
13 Nov 2019
Imperceptible Adversarial Attacks on Tabular Data
Vincent Ballet
X. Renard
Jonathan Aigrain
Thibault Laugel
P. Frossard
Marcin Detyniecki
10
72
0
08 Nov 2019
Adversarial Attacks on GMM i-vector based Speaker Verification Systems
Xu Li
Jinghua Zhong
Xixin Wu
Jianwei Yu
Xunying Liu
Helen Meng
AAML
21
78
0
08 Nov 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Adversarial Examples for Cost-Sensitive Classifiers
Mahdi Akbari Zarkesh
A. Lohn
Ali Movaghar
SILM
AAML
24
3
0
04 Oct 2019
Perturbations are not Enough: Generating Adversarial Examples with Spatial Distortions
He Zhao
Trung Le
Paul Montague
O. Vel
Tamas Abraham
Dinh Q. Phung
AAML
20
8
0
03 Oct 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
Sign-OPT: A Query-Efficient Hard-label Adversarial Attack
Minhao Cheng
Simranjit Singh
Patrick H. Chen
Pin-Yu Chen
Sijia Liu
Cho-Jui Hsieh
AAML
124
219
0
24 Sep 2019
Previous
1
2
3
...
10
11
7
8
9
Next