ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.01236
  4. Cited By
Adversarial Machine Learning at Scale

Adversarial Machine Learning at Scale

4 November 2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
    AAML
ArXivPDFHTML

Papers citing "Adversarial Machine Learning at Scale"

49 / 1,599 papers shown
Title
Attacking Visual Language Grounding with Adversarial Examples: A Case
  Study on Neural Image Captioning
Attacking Visual Language Grounding with Adversarial Examples: A Case Study on Neural Image Captioning
Hongge Chen
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
Cho-Jui Hsieh
GAN
AAML
35
49
0
06 Dec 2017
Improving Network Robustness against Adversarial Attacks with Compact
  Convolution
Improving Network Robustness against Adversarial Attacks with Compact Convolution
Rajeev Ranjan
S. Sankaranarayanan
Carlos D. Castillo
Rama Chellappa
AAML
24
14
0
03 Dec 2017
Towards Robust Neural Networks via Random Self-ensemble
Towards Robust Neural Networks via Random Self-ensemble
Xuanqing Liu
Minhao Cheng
Huan Zhang
Cho-Jui Hsieh
FedML
AAML
58
419
0
02 Dec 2017
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Measuring the tendency of CNNs to Learn Surface Statistical Regularities
Jason Jo
Yoshua Bengio
AAML
26
249
0
30 Nov 2017
Interpretability Beyond Feature Attribution: Quantitative Testing with
  Concept Activation Vectors (TCAV)
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
77
1,800
0
30 Nov 2017
On the Robustness of Semantic Segmentation Models to Adversarial Attacks
On the Robustness of Semantic Segmentation Models to Adversarial Attacks
Anurag Arnab
O. Mikšík
Philip Torr
AAML
33
304
0
27 Nov 2017
Improving the Adversarial Robustness and Interpretability of Deep Neural
  Networks by Regularizing their Input Gradients
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
A. Ross
Finale Doshi-Velez
AAML
37
677
0
26 Nov 2017
Wasserstein Introspective Neural Networks
Wasserstein Introspective Neural Networks
Kwonjoon Lee
Weijian Xu
Fan Fan
Zhuowen Tu
32
57
0
24 Nov 2017
Adversarial Attacks Beyond the Image Space
Adversarial Attacks Beyond the Image Space
Fangyin Wei
Chenxi Liu
Yu-Siang Wang
Weichao Qiu
Lingxi Xie
Yu-Wing Tai
Chi-Keung Tang
Alan Yuille
AAML
41
145
0
20 Nov 2017
Enhanced Attacks on Defensively Distilled Deep Neural Networks
Enhanced Attacks on Defensively Distilled Deep Neural Networks
Yujia Liu
Weiming Zhang
Shaohua Li
Nenghai Yu
AAML
13
6
0
16 Nov 2017
Defense against Universal Adversarial Perturbations
Defense against Universal Adversarial Perturbations
Naveed Akhtar
Jian Liu
Ajmal Mian
AAML
38
207
0
16 Nov 2017
Machine vs Machine: Minimax-Optimal Defense Against Adversarial Examples
Machine vs Machine: Minimax-Optimal Defense Against Adversarial Examples
Jihun Hamm
Akshay Mehra
AAML
29
7
0
12 Nov 2017
Crafting Adversarial Examples For Speech Paralinguistics Applications
Crafting Adversarial Examples For Speech Paralinguistics Applications
Yuan Gong
C. Poellabauer
AAML
14
120
0
09 Nov 2017
Intriguing Properties of Adversarial Examples
Intriguing Properties of Adversarial Examples
E. D. Cubuk
Barret Zoph
S. Schoenholz
Quoc V. Le
AAML
31
84
0
08 Nov 2017
Mitigating Adversarial Effects Through Randomization
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
23
1,042
0
06 Nov 2017
Attacking Binarized Neural Networks
Attacking Binarized Neural Networks
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
14
104
0
01 Nov 2017
Countering Adversarial Images using Input Transformations
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
54
1,388
0
31 Oct 2017
Generating Natural Adversarial Examples
Generating Natural Adversarial Examples
Zhengli Zhao
Dheeru Dua
Sameer Singh
GAN
AAML
40
596
0
31 Oct 2017
PixelDefend: Leveraging Generative Models to Understand and Defend
  against Adversarial Examples
PixelDefend: Leveraging Generative Models to Understand and Defend against Adversarial Examples
Yang Song
Taesup Kim
Sebastian Nowozin
Stefano Ermon
Nate Kushman
AAML
54
786
0
30 Oct 2017
Attacking the Madry Defense Model with $L_1$-based Adversarial Examples
Attacking the Madry Defense Model with L1L_1L1​-based Adversarial Examples
Yash Sharma
Pin-Yu Chen
17
118
0
30 Oct 2017
Certifying Some Distributional Robustness with Principled Adversarial
  Training
Certifying Some Distributional Robustness with Principled Adversarial Training
Aman Sinha
Hongseok Namkoong
Riccardo Volpi
John C. Duchi
OOD
58
855
0
29 Oct 2017
Boosting Adversarial Attacks with Momentum
Boosting Adversarial Attacks with Momentum
Yinpeng Dong
Fangzhou Liao
Tianyu Pang
Hang Su
Jun Zhu
Xiaolin Hu
Jianguo Li
AAML
26
83
0
17 Oct 2017
Detecting Adversarial Attacks on Neural Network Policies with Visual
  Foresight
Detecting Adversarial Attacks on Neural Network Policies with Visual Foresight
Yen-Chen Lin
Ming Liu
Min Sun
Jia-Bin Huang
AAML
29
48
0
02 Oct 2017
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in
  Neural Networks
DeepSafe: A Data-driven Approach for Checking Adversarial Robustness in Neural Networks
D. Gopinath
Guy Katz
C. Păsăreanu
Clark W. Barrett
AAML
50
87
0
02 Oct 2017
Fooling Vision and Language Models Despite Localization and Attention
  Mechanism
Fooling Vision and Language Models Despite Localization and Attention Mechanism
Xiaojun Xu
Xinyun Chen
Chang-rui Liu
Anna Rohrbach
Trevor Darrell
D. Song
AAML
10
41
0
25 Sep 2017
Mitigating Evasion Attacks to Deep Neural Networks via Region-based
  Classification
Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification
Xiaoyu Cao
Neil Zhenqiang Gong
AAML
28
208
0
17 Sep 2017
REMOTEGATE: Incentive-Compatible Remote Configuration of Security
  Gateways
REMOTEGATE: Incentive-Compatible Remote Configuration of Security Gateways
Abhinav Aggarwal
M. Zamani
Mihai Christodorescu
24
0
0
14 Sep 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial
  Examples
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
24
637
0
13 Sep 2017
Towards Interpretable Deep Neural Networks by Leveraging Adversarial
  Examples
Towards Interpretable Deep Neural Networks by Leveraging Adversarial Examples
Yinpeng Dong
Hang Su
Jun Zhu
Fan Bao
AAML
39
128
0
18 Aug 2017
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural
  Networks without Training Substitute Models
ZOO: Zeroth Order Optimization based Black-box Attacks to Deep Neural Networks without Training Substitute Models
Pin-Yu Chen
Huan Zhang
Yash Sharma
Jinfeng Yi
Cho-Jui Hsieh
AAML
24
1,854
0
14 Aug 2017
Cascade Adversarial Machine Learning Regularized with a Unified
  Embedding
Cascade Adversarial Machine Learning Regularized with a Unified Embedding
Taesik Na
J. Ko
Saibal Mukhopadhyay
AAML
GAN
26
102
0
08 Aug 2017
Adversarial Robustness: Softmax versus Openmax
Adversarial Robustness: Softmax versus Openmax
Andras Rozsa
Manuel Günther
Terrance E. Boult
AAML
8
32
0
05 Aug 2017
Fast Feature Fool: A data independent approach to universal adversarial
  perturbations
Fast Feature Fool: A data independent approach to universal adversarial perturbations
Konda Reddy Mopuri
Utsav Garg
R. Venkatesh Babu
AAML
38
205
0
18 Jul 2017
UPSET and ANGRI : Breaking High Performance Image Classifiers
UPSET and ANGRI : Breaking High Performance Image Classifiers
Sayantan Sarkar
Ankan Bansal
U. Mahbub
Rama Chellappa
AAML
30
108
0
04 Jul 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
92
11,884
0
19 Jun 2017
MAT: A Multi-strength Adversarial Training Method to Mitigate
  Adversarial Attacks
MAT: A Multi-strength Adversarial Training Method to Mitigate Adversarial Attacks
Chang Song
Hsin-Pai Cheng
Huanrui Yang
Sicheng Li
Chunpeng Wu
Qing Wu
H. Li
Yiran Chen
AAML
29
2
0
27 May 2017
Detecting Adversarial Image Examples in Deep Networks with Adaptive
  Noise Reduction
Detecting Adversarial Image Examples in Deep Networks with Adaptive Noise Reduction
Bin Liang
Hongcheng Li
Miaoqiang Su
Xirong Li
Wenchang Shi
Xiaofeng Wang
AAML
14
216
0
23 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
73
2,701
0
19 May 2017
Parseval Networks: Improving Robustness to Adversarial Examples
Parseval Networks: Improving Robustness to Adversarial Examples
Moustapha Cissé
Piotr Bojanowski
Edouard Grave
Yann N. Dauphin
Nicolas Usunier
AAML
86
798
0
28 Apr 2017
Universal Adversarial Perturbations Against Semantic Image Segmentation
Universal Adversarial Perturbations Against Semantic Image Segmentation
J. H. Metzen
Mummadi Chaithanya Kumar
Thomas Brox
Volker Fischer
AAML
30
287
0
19 Apr 2017
Adversarial and Clean Data Are Not Twins
Adversarial and Clean Data Are Not Twins
Zhitao Gong
Wenlu Wang
Wei-Shinn Ku
AAML
21
156
0
17 Apr 2017
Adversarial Transformation Networks: Learning to Generate Adversarial
  Examples
Adversarial Transformation Networks: Learning to Generate Adversarial Examples
S. Baluja
Ian S. Fischer
GAN
37
284
0
28 Mar 2017
Adversarial Examples for Semantic Segmentation and Object Detection
Adversarial Examples for Semantic Segmentation and Object Detection
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Yuyin Zhou
Lingxi Xie
Alan Yuille
GAN
AAML
37
926
0
24 Mar 2017
Adversarial Attacks on Neural Network Policies
Adversarial Attacks on Neural Network Policies
Sandy Huang
Nicolas Papernot
Ian Goodfellow
Yan Duan
Pieter Abbeel
MLAU
AAML
13
830
0
08 Feb 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
A Theoretical Framework for Robustness of (Deep) Classifiers against
  Adversarial Examples
A Theoretical Framework for Robustness of (Deep) Classifiers against Adversarial Examples
Beilun Wang
Ji Gao
Yanjun Qi
AAML
19
30
0
01 Dec 2016
Towards Robust Deep Neural Networks with BANG
Towards Robust Deep Neural Networks with BANG
Andras Rozsa
Manuel Günther
Terrance E. Boult
AAML
OOD
24
76
0
01 Dec 2016
LOTS about Attacking Deep Features
LOTS about Attacking Deep Features
Andras Rozsa
Manuel Günther
Terrance E. Boult
AAML
48
42
0
18 Nov 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
341
5,849
0
08 Jul 2016
Previous
123...303132