Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.01236
Cited By
v1
v2 (latest)
Adversarial Machine Learning at Scale
4 November 2016
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adversarial Machine Learning at Scale"
50 / 1,610 papers shown
Title
Backpropagating Linearly Improves Transferability of Adversarial Examples
Yiwen Guo
Qizhang Li
Hao Chen
FedML
AAML
84
117
0
07 Dec 2020
Practical No-box Adversarial Attacks against DNNs
Qizhang Li
Yiwen Guo
Hao Chen
AAML
79
59
0
04 Dec 2020
FAT: Federated Adversarial Training
Giulio Zizzo
Ambrish Rawat
M. Sinn
Beat Buesser
FedML
89
43
0
03 Dec 2020
Content-Adaptive Pixel Discretization to Improve Model Robustness
Ryan Feng
Wu-chi Feng
Atul Prakash
AAML
37
0
0
03 Dec 2020
Towards Defending Multiple
ℓ
p
\ell_p
ℓ
p
-norm Bounded Adversarial Perturbations via Gated Batch Normalization
Aishan Liu
Shiyu Tang
Xinyun Chen
Lei Huang
Zhuozhuo Tu
Xianglong Liu
Dacheng Tao
AAML
110
35
0
03 Dec 2020
From a Fourier-Domain Perspective on Adversarial Examples to a Wiener Filter Defense for Semantic Segmentation
Nikhil Kapoor
Andreas Bär
Serin Varghese
Jan David Schneider
Fabian Hüger
Peter Schlicht
Tim Fingscheidt
AAML
74
10
0
02 Dec 2020
Visually Imperceptible Adversarial Patch Attacks on Digital Images
Yaguan Qian
Jiamin Wang
Bin Wang
Xiang Ling
Zhaoquan Gu
Chunming Wu
Wassim Swaileh
AAML
66
2
0
02 Dec 2020
Boosting Adversarial Attacks on Neural Networks with Better Optimizer
Heng Yin
Hengwei Zhang
Jin-dong Wang
Ruiyu Dou
AAML
76
8
0
01 Dec 2020
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
90
95
0
30 Nov 2020
FaceGuard: A Self-Supervised Defense Against Adversarial Face Images
Debayan Deb
Xiaoming Liu
Anil K. Jain
CVBM
AAML
PICV
98
27
0
28 Nov 2020
Deterministic Certification to Adversarial Attacks via Bernstein Polynomial Approximation
Ching-Chia Kao
Jhe-Bang Ko
Chun-Shien Lu
AAML
65
1
0
28 Nov 2020
Voting based ensemble improves robustness of defensive models
Devvrit
Minhao Cheng
Cho-Jui Hsieh
Inderjit Dhillon
OOD
FedML
AAML
73
12
0
28 Nov 2020
A Study on the Uncertainty of Convolutional Layers in Deep Neural Networks
Hao Shen
Sihong Chen
Ran Wang
70
5
0
27 Nov 2020
Use the Spear as a Shield: A Novel Adversarial Example based Privacy-Preserving Technique against Membership Inference Attacks
Mingfu Xue
Chengxiang Yuan
Can He
Zhiyu Wu
Yushu Zhang
Yanfeng Guo
Weiqiang Liu
MIACV
16
12
0
27 Nov 2020
Delving Deep into Label Smoothing
Chang-Bin Zhang
Peng-Tao Jiang
Qibin Hou
Yunchao Wei
Qi Han
Zhen Li
Ming-Ming Cheng
134
215
0
25 Nov 2020
When Machine Learning Meets Privacy: A Survey and Outlook
B. Liu
Ming Ding
Sina shaham
W. Rahayu
F. Farokhi
Zihuai Lin
97
293
0
24 Nov 2020
Nudge Attacks on Point-Cloud DNNs
Yiren Zhao
Ilia Shumailov
Robert D. Mullins
Ross J. Anderson
3DPC
AAML
57
9
0
22 Nov 2020
Spatially Correlated Patterns in Adversarial Images
Nandish Chattopadhyay
Lionell Yip En Zhi
Bryan Tan Bing Xing
Anupam Chattopadhyay
AAML
41
2
0
21 Nov 2020
Contextual Fusion For Adversarial Robustness
Aiswarya Akumalla
S. Haney
M. Bazhenov
AAML
36
1
0
18 Nov 2020
Challenges in Deploying Machine Learning: a Survey of Case Studies
Andrei Paleyes
Raoul-Gabriel Urma
Neil D. Lawrence
71
409
0
18 Nov 2020
Self-Gradient Networks
Hossein Aboutalebi
M. Shafiee
AAML
29
0
0
18 Nov 2020
Shaping Deep Feature Space towards Gaussian Mixture for Visual Classification
Weitao Wan
Jiansheng Chen
Cheng Yu
Tong Wu
Yuanyi Zhong
Ming-Hsuan Yang
38
8
0
18 Nov 2020
Probing Predictions on OOD Images via Nearest Categories
Yao-Yuan Yang
Cyrus Rashtchian
Ruslan Salakhutdinov
Kamalika Chaudhuri
AAML
79
0
0
17 Nov 2020
FoolHD: Fooling speaker identification by Highly imperceptible adversarial Disturbances
Ali Shahin Shamsabadi
Francisco Teixeira
A. Abad
Bhiksha Raj
Andrea Cavallaro
Isabel Trancoso
AAML
62
30
0
17 Nov 2020
Extreme Value Preserving Networks
Mingjie Sun
Jianguo Li
Changshui Zhang
AAML
MDE
33
0
0
17 Nov 2020
Towards Understanding the Regularization of Adversarial Robustness on Neural Networks
Yuxin Wen
Shuai Li
Kui Jia
AAML
72
24
0
15 Nov 2020
Bridging the Performance Gap between FGSM and PGD Adversarial Training
Tianjin Huang
Vlado Menkovski
Yulong Pei
Mykola Pechenizkiy
AAML
46
20
0
07 Nov 2020
A Black-Box Attack Model for Visually-Aware Recommender Systems
Rami Cohen
Oren Sar Shalom
Dietmar Jannach
A. Amir
50
28
0
05 Nov 2020
The Vulnerability of the Neural Networks Against Adversarial Examples in Deep Learning Algorithms
Rui Zhao
AAML
69
1
0
02 Nov 2020
WaveTransform: Crafting Adversarial Examples via Input Decomposition
Divyam Anshumaan
Akshay Agarwal
Mayank Vatsa
Richa Singh
AAML
54
11
0
29 Oct 2020
Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine Framework and Its Adversarial Examples
Yingwei Li
Zhuotun Zhu
Yuyin Zhou
Yingda Xia
Wei Shen
Elliot K. Fishman
Alan Yuille
MedIm
87
23
0
29 Oct 2020
A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems
Jiawei Zhang
Peijun Xiao
Ruoyu Sun
Zhi-Quan Luo
128
99
0
29 Oct 2020
GreedyFool: Distortion-Aware Sparse Adversarial Attack
Xiaoyi Dong
Dongdong Chen
Jianmin Bao
Chuan Qin
Lu Yuan
Weiming Zhang
Nenghai Yu
Dong Chen
AAML
72
63
0
26 Oct 2020
Attack Agnostic Adversarial Defense via Visual Imperceptible Bound
S. Chhabra
Akshay Agarwal
Richa Singh
Mayank Vatsa
AAML
66
3
0
25 Oct 2020
Are Adversarial Examples Created Equal? A Learnable Weighted Minimax Risk for Robustness under Non-uniform Attacks
Huimin Zeng
Chen Zhu
Tom Goldstein
Furong Huang
AAML
74
18
0
24 Oct 2020
Towards Robust Neural Networks via Orthogonal Diversity
Kun Fang
Qinghua Tao
Yingwen Wu
Tao Li
Jia Cai
Feipeng Cai
Xiaolin Huang
Jie Yang
AAML
101
8
0
23 Oct 2020
Contrastive Learning with Adversarial Examples
Chih-Hui Ho
Nuno Vasconcelos
SSL
92
142
0
22 Oct 2020
Theory-based residual neural networks: A synergy of discrete choice models and deep neural networks
Shenhao Wang
Baichuan Mo
Jinhuan Zhao
AI4CE
48
36
0
22 Oct 2020
Precise Statistical Analysis of Classification Accuracies for Adversarial Training
Adel Javanmard
Mahdi Soltanolkotabi
AAML
110
63
0
21 Oct 2020
Certified Distributional Robustness on Smoothed Classifiers
Jungang Yang
Liyao Xiang
Pengzhi Chu
Yukun Wang
Cheng Zhou
Xinbing Wang
AAML
51
0
0
21 Oct 2020
Learning Black-Box Attackers with Transferable Priors and Query Feedback
Jiancheng Yang
Yangzhou Jiang
Xiaoyang Huang
Bingbing Ni
Chenglong Zhao
AAML
135
82
0
21 Oct 2020
Boosting Gradient for White-Box Adversarial Attacks
Hongying Liu
Zhenyu Zhou
Fanhua Shang
Xiaoyu Qi
Yuanyuan Liu
L. Jiao
AAML
56
8
0
21 Oct 2020
Ulixes: Facial Recognition Privacy with Adversarial Machine Learning
Thomas Cilloni
Wei Wang
Charles Walter
Charles Fleming
PICV
AAML
44
9
0
20 Oct 2020
Poisoned classifiers are not only backdoored, they are fundamentally broken
Mingjie Sun
Siddhant Agarwal
J. Zico Kolter
61
26
0
18 Oct 2020
Exploiting Vulnerabilities of Deep Learning-based Energy Theft Detection in AMI through Adversarial Attacks
Jiangnan Li
Yingyuan Yang
Jinyuan Stella Sun
AAML
81
8
0
16 Oct 2020
Maximum-Entropy Adversarial Data Augmentation for Improved Generalization and Robustness
Long Zhao
Ting Liu
Xi Peng
Dimitris N. Metaxas
OOD
AAML
131
172
0
15 Oct 2020
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning
Hongjun Wang
Guanbin Li
Xiaobai Liu
Liang Lin
GAN
AAML
95
23
0
15 Oct 2020
Survive the Schema Changes: Integration of Unmanaged Data Using Deep Learning
Zijie Wang
Lixi Zhou
A. Das
Valay Dave
Zhanpeng Jin
Jia Zou
90
3
0
15 Oct 2020
Linking average- and worst-case perturbation robustness via class selectivity and dimensionality
Matthew L. Leavitt
Ari S. Morcos
AAML
62
2
0
14 Oct 2020
To be Robust or to be Fair: Towards Fairness in Adversarial Training
Han Xu
Xiaorui Liu
Yaxin Li
Anil K. Jain
Jiliang Tang
76
182
0
13 Oct 2020
Previous
1
2
3
...
17
18
19
...
31
32
33
Next