ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.00336
  4. Cited By
Stochastic Variational Deep Kernel Learning

Stochastic Variational Deep Kernel Learning

1 November 2016
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
    BDL
ArXivPDFHTML

Papers citing "Stochastic Variational Deep Kernel Learning"

21 / 21 papers shown
Title
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
244
3
0
05 Jun 2024
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
110
444
0
17 Jun 2020
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any
  Architecture are Gaussian Processes
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
80
197
0
28 Oct 2019
The Kernel Mixture Network: A Nonparametric Method for Conditional
  Density Estimation of Continuous Random Variables
The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables
L. Ambrogioni
Umut Güçlü
Marcel van Gerven
E. Maris
BDL
111
47
0
19 May 2017
Variational Auto-encoded Deep Gaussian Processes
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
45
131
0
19 Nov 2015
Deep Kernel Learning
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
189
882
0
06 Nov 2015
Thoughts on Massively Scalable Gaussian Processes
Thoughts on Massively Scalable Gaussian Processes
A. Wilson
Christoph Dann
H. Nickisch
71
110
0
05 Nov 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
33
21
0
27 Oct 2015
MCMC for Variationally Sparse Gaussian Processes
MCMC for Variationally Sparse Gaussian Processes
J. Hensman
A. G. Matthews
Maurizio Filippone
Zoubin Ghahramani
49
141
0
12 Jun 2015
Kernel Interpolation for Scalable Structured Gaussian Processes
  (KISS-GP)
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
59
512
0
03 Mar 2015
A la Carte - Learning Fast Kernels
A la Carte - Learning Fast Kernels
Zichao Yang
Alex Smola
Le Song
A. Wilson
42
132
0
19 Dec 2014
Scalable Variational Gaussian Process Classification
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
49
641
0
07 Nov 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
206
14,703
0
20 Jun 2014
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
144
272
0
24 Feb 2014
Automatic Construction and Natural-Language Description of Nonparametric
  Regression Models
Automatic Construction and Natural-Language Description of Nonparametric Regression Models
J. Lloyd
David Duvenaud
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
57
241
0
18 Feb 2014
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
60
150
0
06 Feb 2014
Gaussian Processes for Big Data
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
89
1,226
0
26 Sep 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
58
604
0
18 Feb 2013
Deep Gaussian Processes
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
78
1,178
0
02 Nov 2012
Gaussian Process Regression Networks
Gaussian Process Regression Networks
A. Wilson
David A. Knowles
Zoubin Ghahramani
GP
BDL
122
192
0
19 Oct 2011
Additive Kernels for Gaussian Process Modeling
Additive Kernels for Gaussian Process Modeling
N. Durrande
D. Ginsbourger
O. Roustant
64
25
0
21 Mar 2011
1