Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.00336
Cited By
Stochastic Variational Deep Kernel Learning
1 November 2016
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Stochastic Variational Deep Kernel Learning"
21 / 21 papers shown
Title
Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise
T. Pouplin
Alan Jeffares
Nabeel Seedat
Mihaela van der Schaar
244
3
0
05 Jun 2024
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
108
444
0
17 Jun 2020
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
78
197
0
28 Oct 2019
The Kernel Mixture Network: A Nonparametric Method for Conditional Density Estimation of Continuous Random Variables
L. Ambrogioni
Umut Güçlü
Marcel van Gerven
E. Maris
BDL
111
47
0
19 May 2017
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
42
131
0
19 Nov 2015
Deep Kernel Learning
A. Wilson
Zhiting Hu
Ruslan Salakhutdinov
Eric Xing
BDL
189
882
0
06 Nov 2015
Thoughts on Massively Scalable Gaussian Processes
A. Wilson
Christoph Dann
H. Nickisch
71
110
0
05 Nov 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
33
21
0
27 Oct 2015
MCMC for Variationally Sparse Gaussian Processes
J. Hensman
A. G. Matthews
Maurizio Filippone
Zoubin Ghahramani
49
141
0
12 Jun 2015
Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP)
A. Wilson
H. Nickisch
GP
59
512
0
03 Mar 2015
A la Carte - Learning Fast Kernels
Zichao Yang
Alex Smola
Le Song
A. Wilson
42
132
0
19 Dec 2014
Scalable Variational Gaussian Process Classification
J. Hensman
A. G. Matthews
Zoubin Ghahramani
BDL
49
641
0
07 Nov 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLM
BDL
3DV
198
14,703
0
20 Jun 2014
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
144
272
0
24 Feb 2014
Automatic Construction and Natural-Language Description of Nonparametric Regression Models
J. Lloyd
David Duvenaud
Roger C. Grosse
J. Tenenbaum
Zoubin Ghahramani
57
241
0
18 Feb 2014
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
Y. Gal
Mark van der Wilk
C. Rasmussen
60
150
0
06 Feb 2014
Gaussian Processes for Big Data
J. Hensman
Nicolò Fusi
Neil D. Lawrence
GP
83
1,226
0
26 Sep 2013
Gaussian Process Kernels for Pattern Discovery and Extrapolation
A. Wilson
Ryan P. Adams
GP
56
604
0
18 Feb 2013
Deep Gaussian Processes
Andreas C. Damianou
Neil D. Lawrence
GP
BDL
75
1,178
0
02 Nov 2012
Gaussian Process Regression Networks
A. Wilson
David A. Knowles
Zoubin Ghahramani
GP
BDL
122
192
0
19 Oct 2011
Additive Kernels for Gaussian Process Modeling
N. Durrande
D. Ginsbourger
O. Roustant
62
25
0
21 Mar 2011
1