ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.6493
31
132

A la Carte - Learning Fast Kernels

19 December 2014
Zichao Yang
Alex Smola
Le Song
A. Wilson
ArXivPDFHTML
Abstract

Kernel methods have great promise for learning rich statistical representations of large modern datasets. However, compared to neural networks, kernel methods have been perceived as lacking in scalability and flexibility. We introduce a family of fast, flexible, lightly parametrized and general purpose kernel learning methods, derived from Fastfood basis function expansions. We provide mechanisms to learn the properties of groups of spectral frequencies in these expansions, which require only O(mlogd) time and O(m) memory, for m basis functions and d input dimensions. We show that the proposed methods can learn a wide class of kernels, outperforming the alternatives in accuracy, speed, and memory consumption.

View on arXiv
Comments on this paper