ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.09900
  4. Cited By
Inference Compilation and Universal Probabilistic Programming

Inference Compilation and Universal Probabilistic Programming

31 October 2016
T. Le
A. G. Baydin
Frank D. Wood
    UQCV
ArXivPDFHTML

Papers citing "Inference Compilation and Universal Probabilistic Programming"

29 / 79 papers shown
Title
Learning to Infer Program Sketches
Learning to Infer Program Sketches
Maxwell Nye
Luke B. Hewitt
J. Tenenbaum
Armando Solar-Lezama
NAI
13
113
0
17 Feb 2019
Meta-Amortized Variational Inference and Learning
Meta-Amortized Variational Inference and Learning
Mike Wu
Kristy Choi
Noah D. Goodman
Stefano Ermon
OOD
VLM
BDL
DRL
38
35
0
05 Feb 2019
ProBO: Versatile Bayesian Optimization Using Any Probabilistic
  Programming Language
ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language
W. Neiswanger
Kirthevasan Kandasamy
Barnabás Póczós
J. Schneider
Eric P. Xing
31
17
0
31 Jan 2019
Neural Clustering Processes
Neural Clustering Processes
Ari Pakman
Yueqi Wang
Catalin Mitelut
JinHyung Lee
Liam Paninski
BDL
14
5
0
28 Dec 2018
Amortized Bayesian inference for clustering models
Amortized Bayesian inference for clustering models
Ari Pakman
Liam Paninski
12
6
0
24 Nov 2018
Inference Over Programs That Make Predictions
Inference Over Programs That Make Predictions
Yura N. Perov
13
2
0
02 Oct 2018
Deep sequential models for sampling-based planning
Deep sequential models for sampling-based planning
Yen-Ling Kuo
Andrei Barbu
Boris Katz
BDL
13
26
0
01 Oct 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank D. Wood
GP
15
196
0
27 Sep 2018
Efficient Probabilistic Inference in the Quest for Physics Beyond the
  Standard Model
Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model
A. G. Baydin
Lukas Heinrich
W. Bhimji
Lei Shao
Saeid Naderiparizi
...
Philip Torr
Victor W. Lee
P. Prabhat
Kyle Cranmer
Frank D. Wood
26
31
0
20 Jul 2018
Genetic algorithms with DNN-based trainable crossover as an example of
  partial specialization of general search
Genetic algorithms with DNN-based trainable crossover as an example of partial specialization of general search
A. Potapov
S. Rodionov
13
5
0
18 Jul 2018
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized
  Semantics and Inference Algorithms
Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms
Yi Wu
Siddharth Srivastava
N. Hay
S. Du
Stuart J. Russell
31
25
0
06 Jun 2018
Mining gold from implicit models to improve likelihood-free inference
Mining gold from implicit models to improve likelihood-free inference
Johann Brehmer
Gilles Louppe
J. Pavez
Kyle Cranmer
AI4CE
TPM
38
180
0
30 May 2018
Forward Amortized Inference for Likelihood-Free Variational
  Marginalization
Forward Amortized Inference for Likelihood-Free Variational Marginalization
L. Ambrogioni
Umut Güçlü
Julia Berezutskaya
Eva W. P. van den Borne
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDL
VLM
14
17
0
29 May 2018
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
Revisiting Reweighted Wake-Sleep for Models with Stochastic Control Flow
T. Le
Adam R. Kosiorek
N. Siddharth
Yee Whye Teh
Frank D. Wood
BDL
9
23
0
26 May 2018
Sequential Neural Likelihood: Fast Likelihood-free Inference with
  Autoregressive Flows
Sequential Neural Likelihood: Fast Likelihood-free Inference with Autoregressive Flows
George Papamakarios
D. Sterratt
Iain Murray
BDL
60
358
0
18 May 2018
High Throughput Synchronous Distributed Stochastic Gradient Descent
High Throughput Synchronous Distributed Stochastic Gradient Descent
Michael Teng
Frank D. Wood
15
2
0
12 Mar 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank D. Wood
Yee Whye Teh
DRL
13
196
0
13 Feb 2018
Using probabilistic programs as proposals
Using probabilistic programs as proposals
Marco F. Cusumano-Towner
Vikash K. Mansinghka
BDL
16
11
0
11 Jan 2018
Improvements to Inference Compilation for Probabilistic Programming in
  Large-Scale Scientific Simulators
Improvements to Inference Compilation for Probabilistic Programming in Large-Scale Scientific Simulators
Mario Lezcano Casado
A. G. Baydin
David Martínez-Rubio
T. Le
Frank D. Wood
...
Gilles Louppe
Kyle Cranmer
Karen Ng
W. Bhimji
P. Prabhat
19
9
0
21 Dec 2017
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank D. Wood
TPM
26
46
0
01 Dec 2017
Meta-Learning MCMC Proposals
Meta-Learning MCMC Proposals
Tongzhou Wang
Yi Wu
David A. Moore
Stuart J. Russell
BDL
21
2
0
21 Aug 2017
Learning Disentangled Representations with Semi-Supervised Deep
  Generative Models
Learning Disentangled Representations with Semi-Supervised Deep Generative Models
Siddharth Narayanaswamy
Brooks Paige
Jan-Willem van de Meent
Alban Desmaison
Noah D. Goodman
Pushmeet Kohli
Frank D. Wood
Philip Torr
DRL
CoGe
14
359
0
01 Jun 2017
Auto-Encoding Sequential Monte Carlo
Auto-Encoding Sequential Monte Carlo
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank D. Wood
BDL
DRL
16
151
0
29 May 2017
Masked Autoregressive Flow for Density Estimation
Masked Autoregressive Flow for Density Estimation
George Papamakarios
Theo Pavlakou
Iain Murray
38
1,327
0
19 May 2017
Learning Probabilistic Programs Using Backpropagation
Learning Probabilistic Programs Using Backpropagation
Avi Pfeffer
BDL
19
0
0
15 May 2017
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
Using Synthetic Data to Train Neural Networks is Model-Based Reasoning
T. Le
A. G. Baydin
R. Zinkov
Frank D. Wood
SyDa
OOD
25
89
0
02 Mar 2017
Neurally-Guided Procedural Models: Amortized Inference for Procedural
  Graphics Programs using Neural Networks
Neurally-Guided Procedural Models: Amortized Inference for Procedural Graphics Programs using Neural Networks
Daniel E. Ritchie
Anna T. Thomas
Pat Hanrahan
Noah D. Goodman
TPM
28
11
0
19 Mar 2016
Automatic differentiation in machine learning: a survey
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
54
2,746
0
20 Feb 2015
MatConvNet - Convolutional Neural Networks for MATLAB
MatConvNet - Convolutional Neural Networks for MATLAB
Andrea Vedaldi
Karel Lenc
183
2,946
0
15 Dec 2014
Previous
12