Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.08104
Cited By
Cleaning large correlation matrices: tools from random matrix theory
25 October 2016
J. Bun
J. Bouchaud
M. Potters
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Cleaning large correlation matrices: tools from random matrix theory"
46 / 46 papers shown
Title
Compute-Optimal LLMs Provably Generalize Better With Scale
Marc Finzi
Sanyam Kapoor
Diego Granziol
Anming Gu
Christopher De Sa
J. Zico Kolter
Andrew Gordon Wilson
30
0
0
21 Apr 2025
Spectral Analysis of Representational Similarity with Limited Neurons
Hyunmo Kang
Abdulkadir Canatar
SueYeon Chung
66
1
0
27 Feb 2025
A theoretical framework for overfitting in energy-based modeling
Giovanni Catania
A. Decelle
Cyril Furtlehner
Beatriz Seoane
57
2
0
31 Jan 2025
Variational Bayes Portfolio Construction
Nicolas Nguyen
James Ridgway
Claire Vernade
31
0
0
09 Nov 2024
On the phase diagram of extensive-rank symmetric matrix denoising beyond rotational invariance
Jean Barbier
Francesco Camilli
Justin Ko
Koki Okajima
26
5
0
04 Nov 2024
A Pluggable Common Sense-Enhanced Framework for Knowledge Graph Completion
Guanglin Niu
Bo Li
Siling Feng
29
0
0
06 Oct 2024
Optimal Estimation of Structured Covariance Operators
Omar Al Ghattas
Jiaheng Chen
D. Sanz-Alonso
Nathan Waniorek
33
3
0
04 Aug 2024
From Zero to Hero: How local curvature at artless initial conditions leads away from bad minima
Tony Bonnaire
Giulio Biroli
C. Cammarota
38
0
0
04 Mar 2024
Weight fluctuations in (deep) linear neural networks and a derivation of the inverse-variance flatness relation
Markus Gross
A. Raulf
Christoph Räth
38
0
0
23 Nov 2023
Simultaneous Dimensionality Reduction: A Data Efficient Approach for Multimodal Representations Learning
Eslam Abdelaleem
Ahmed Roman
K. M. Martini
I. Nemenman
21
1
0
05 Oct 2023
Quantifying the information lost in optimal covariance matrix cleaning
Christian Bongiorno
Lamia Lamrani
21
2
0
03 Oct 2023
On the Noise Sensitivity of the Randomized SVD
Elad Romanov
22
0
0
27 May 2023
Gradient flow on extensive-rank positive semi-definite matrix denoising
A. Bodin
N. Macris
34
3
0
16 Mar 2023
Noise-cleaning the precision matrix of fMRI time series
Miguel Ibánez-Berganza
C. Lucibello
Francesca Santucci
T. Gili
A. Gabrielli
24
1
0
06 Feb 2023
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
Vivien A. Cabannes
B. Kiani
Randall Balestriero
Yann LeCun
A. Bietti
SSL
11
31
0
06 Feb 2023
Gradient flow in the gaussian covariate model: exact solution of learning curves and multiple descent structures
Antione Bodin
N. Macris
34
4
0
13 Dec 2022
Correlation matrix of equi-correlated normal population: fluctuation of the largest eigenvalue, scaling of the bulk eigenvalues, and stock market
Y. Akama
16
3
0
11 Dec 2022
Concentration Phenomenon for Random Dynamical Systems: An Operator Theoretic Approach
Muhammad Naeem
Miroslav Pajic
15
1
0
07 Dec 2022
Boundary between noise and information applied to filtering neural network weight matrices
Max Staats
M. Thamm
B. Rosenow
16
3
0
08 Jun 2022
Random matrix analysis of deep neural network weight matrices
M. Thamm
Max Staats
B. Rosenow
27
12
0
28 Mar 2022
Cleaning large-dimensional covariance matrices for correlated samples
Z. Burda
A. Jarosz
28
8
0
03 Jul 2021
Large factor model estimation by nuclear norm plus
l
1
l_1
l
1
norm penalization
M. Farné
A. Montanari
22
0
0
06 Apr 2021
Appearance of Random Matrix Theory in Deep Learning
Nicholas P. Baskerville
Diego Granziol
J. Keating
13
11
0
12 Feb 2021
Estimation of Large Financial Covariances: A Cross-Validation Approach
Vincent W. C. Tan
S. Zohren
19
5
0
10 Dec 2020
Sparse sketches with small inversion bias
Michal Derezinski
Zhenyu Liao
Edgar Dobriban
Michael W. Mahoney
15
21
0
21 Nov 2020
A Random Matrix Theory Approach to Damping in Deep Learning
Diego Granziol
Nicholas P. Baskerville
AI4CE
ODL
24
2
0
15 Nov 2020
Statistical inference for principal components of spiked covariance matrices
Z. Bao
Xiucai Ding
Jingming Wang
Ke Wang
16
50
0
27 Aug 2020
Wigner and Wishart Ensembles for graphical models
Hideto Nakashima
P. Graczyk
13
2
0
10 Aug 2020
Spectral deconvolution of unitarily invariant matrix models
Pierre Tarrago
11
6
0
16 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
29
48
0
16 Jun 2020
Beyond Random Matrix Theory for Deep Networks
Diego Granziol
19
16
0
13 Jun 2020
Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data
Charles H. Martin
Tongsu Peng
Peng
Michael W. Mahoney
25
101
0
17 Feb 2020
Improved Covariance Matrix Estimator using Shrinkage Transformation and Random Matrix Theory
Samruddhi Deshmukh
Amartansh Dubey
22
3
0
08 Dec 2019
CorrGAN: Sampling Realistic Financial Correlation Matrices Using Generative Adversarial Networks
Gautier Marti
GAN
8
44
0
21 Oct 2019
Asymptotics of empirical eigenvalues for large separable covariance matrices
Tiebin Mi
Robert C. Qiu
24
0
0
10 Oct 2019
Ridge Regression: Structure, Cross-Validation, and Sketching
Sifan Liu
Edgar Dobriban
CML
25
48
0
06 Oct 2019
Agglomerative Likelihood Clustering
Lionel Yelibi
Tim Gebbie
AI4TS
22
1
0
02 Aug 2019
Learning Clique Forests
Guido Previde Massara
T. Aste
24
16
0
06 May 2019
Traditional and Heavy-Tailed Self Regularization in Neural Network Models
Charles H. Martin
Michael W. Mahoney
18
119
0
24 Jan 2019
Optimal cleaning for singular values of cross-covariance matrices
Florent Benaych-Georges
J. Bouchaud
M. Potters
31
7
0
16 Jan 2019
MIXANDMIX: numerical techniques for the computation of empirical spectral distributions of population mixtures
Lucilio Cordero-Grande
13
3
0
13 Dec 2018
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning
Charles H. Martin
Michael W. Mahoney
AI4CE
30
190
0
02 Oct 2018
On the overestimation of the largest eigenvalue of a covariance matrix
Soufiane Hayou
13
2
0
11 Aug 2017
Cleaning the correlation matrix with a denoising autoencoder
Soufiane Hayou
15
0
0
09 Aug 2017
Autoregressive Convolutional Neural Networks for Asynchronous Time Series
Mikolaj Binkowski
Gautier Marti
Philippe Donnat
AI4TS
BDL
30
149
0
12 Mar 2017
High dimensional deformed rectangular matrices with applications in matrix denoising
Xiucai Ding
16
46
0
22 Feb 2017
1