ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.05757
19
5

Estimation of Large Financial Covariances: A Cross-Validation Approach

10 December 2020
Vincent W. C. Tan
S. Zohren
ArXivPDFHTML
Abstract

We introduce a novel covariance estimator for portfolio selection that adapts to the non-stationary or persistent heteroskedastic environments of financial time series by employing exponentially weighted averages and nonlinearly shrinking the sample eigenvalues through cross-validation. Our estimator is structure agnostic, transparent, and computationally feasible in large dimensions. By correcting the biases in the sample eigenvalues and aligning our estimator to more recent risk, we demonstrate that our estimator performs well in large dimensions against existing state-of-the-art static and dynamic covariance shrinkage estimators through simulations and with an empirical application in active portfolio management.

View on arXiv
Comments on this paper