Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.05683
Cited By
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
18 October 2016
C. A. Naesseth
Francisco J. R. Ruiz
Scott W. Linderman
David M. Blei
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms"
50 / 61 papers shown
Title
Learning Interpretable Deep Disentangled Neural Networks for Hyperspectral Unmixing
R. Borsoi
Deniz Erdoğmuş
Tales Imbiriba
21
4
0
03 Oct 2023
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
24
1
0
26 Sep 2023
Likelihood-based inference and forecasting for trawl processes: a stochastic optimization approach
D. Leonte
Almut E. D. Veraart
AI4TS
22
0
0
30 Aug 2023
Geometry-Aware Latent Representation Learning for Modeling Disease Progression of Barrett's Esophagus
Vivien van Veldhuizen
DRL
36
0
0
17 Mar 2023
The Sample Complexity of Approximate Rejection Sampling with Applications to Smoothed Online Learning
Adam Block
Yury Polyanskiy
36
7
0
09 Feb 2023
A variational autoencoder-based nonnegative matrix factorisation model for deep dictionary learning
Hong-Bo Xie
Caoyuan Li
Shuliang Wang
R. Xu
Kerrie Mengersen
16
0
0
18 Jan 2023
ADEV: Sound Automatic Differentiation of Expected Values of Probabilistic Programs
Alexander K. Lew
Mathieu Huot
S. Staton
Vikash K. Mansinghka
19
20
0
13 Dec 2022
An Overview on Controllable Text Generation via Variational Auto-Encoders
Haoqin Tu
Yitong Li
BDL
27
2
0
15 Nov 2022
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
27
1
0
27 Sep 2022
Gradient Estimation for Binary Latent Variables via Gradient Variance Clipping
Russell Z. Kunes
Mingzhang Yin
Max Land
Doron Haviv
D. Pe’er
Simon Tavaré
BDL
24
2
0
12 Aug 2022
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
Lorenz Vaitl
K. Nicoli
Shinichi Nakajima
Pan Kessel
61
24
0
17 Jul 2022
Decorrelate Irrelevant, Purify Relevant: Overcome Textual Spurious Correlations from a Feature Perspective
Shihan Dou
Rui Zheng
Ting Wu
Songyang Gao
Junjie Shan
Qi Zhang
Yueming Wu
Xuanjing Huang
22
8
0
16 Feb 2022
Towards Controllable Agent in MOBA Games with Generative Modeling
Shubao Zhang
37
0
0
15 Dec 2021
Differentiable Annealed Importance Sampling and the Perils of Gradient Noise
Guodong Zhang
Kyle Hsu
Jianing Li
Chelsea Finn
Roger C. Grosse
11
39
0
21 Jul 2021
Variational Rejection Particle Filtering
Rahul Sharma
S. Banerjee
Dootika Vats
Piyush Rai
BDL
22
0
0
29 Mar 2021
Continuous normalizing flows on manifolds
Luca Falorsi
BDL
AI4CE
30
10
0
14 Mar 2021
Topic Modelling Meets Deep Neural Networks: A Survey
He Zhao
Dinh Q. Phung
Viet Huynh
Yuan Jin
Lan Du
Wray L. Buntine
BDL
8
136
0
28 Feb 2021
A Discrete Variational Recurrent Topic Model without the Reparametrization Trick
Mehdi Rezaee
Francis Ferraro
BDL
DRL
17
27
0
22 Oct 2020
Improving Relational Regularized Autoencoders with Spherical Sliced Fused Gromov Wasserstein
Khai Nguyen
S. Nguyen
Nhat Ho
Tung Pham
Hung Bui
16
21
0
05 Oct 2020
Context Reinforced Neural Topic Modeling over Short Texts
Jiachun Feng
Zusheng Zhang
Chengzhuo Ding
Yanghui Rao
Haoran Xie
BDL
14
30
0
11 Aug 2020
Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference
Hao Zhang
Bo Chen
Yulai Cong
D. Guo
Hongwei Liu
Mingyuan Zhou
BDL
24
27
0
15 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
22
31
0
12 Jun 2020
The Power Spherical distribution
Nicola De Cao
Wilker Aziz
22
28
0
08 Jun 2020
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study
Himanshu Sharma
Elise Jennings
BDL
27
3
0
23 May 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
121
54
0
23 Mar 2020
The continuous categorical: a novel simplex-valued exponential family
E. Gordon-Rodríguez
G. Loaiza-Ganem
John P. Cunningham
24
21
0
20 Feb 2020
Generalized Transformation-based Gradient
A. Wu
Shuangxi Chen
Chunming Wu
9
2
0
06 Nov 2019
The Thermodynamic Variational Objective
Vaden Masrani
T. Le
Frank Wood
19
48
0
28 Jun 2019
Monte Carlo Gradient Estimation in Machine Learning
S. Mohamed
Mihaela Rosca
Michael Figurnov
A. Mnih
45
397
0
25 Jun 2019
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,290
0
06 Jun 2019
A New Distribution on the Simplex with Auto-Encoding Applications
Andrew Stirn
Tony Jebara
David A. Knowles
14
5
0
28 May 2019
ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables
Mingzhang Yin
Yuguang Yue
Mingyuan Zhou
14
23
0
04 May 2019
Elements of Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
24
95
0
12 Mar 2019
Reparameterizing Distributions on Lie Groups
Luca Falorsi
P. D. Haan
Tim R. Davidson
Patrick Forré
BDL
DRL
29
83
0
07 Mar 2019
Radial and Directional Posteriors for Bayesian Neural Networks
Changyong Oh
Kamil Adamczewski
Mijung Park
BDL
15
20
0
07 Feb 2019
Constructing the Matrix Multilayer Perceptron and its Application to the VAE
Jalil Taghia
Maria Bånkestad
Fredrik Lindsten
Thomas B. Schon
DRL
14
6
0
04 Feb 2019
Variational Bayesian Decision-making for Continuous Utilities
Tomasz Kuśmierczyk
J. Sakaya
Arto Klami
11
21
0
02 Feb 2019
GO Gradient for Expectation-Based Objectives
Yulai Cong
Miaoyun Zhao
Ke Bai
Lawrence Carin
29
16
0
17 Jan 2019
A Tutorial on Deep Latent Variable Models of Natural Language
Yoon Kim
Sam Wiseman
Alexander M. Rush
BDL
VLM
30
42
0
17 Dec 2018
Resampled Priors for Variational Autoencoders
Matthias Bauer
A. Mnih
BDL
DRL
11
110
0
26 Oct 2018
A minimax near-optimal algorithm for adaptive rejection sampling
Juliette Achdou
Joseph C. Lam
Alexandra Carpentier
Gilles Blanchard
14
5
0
22 Oct 2018
ARM: Augment-REINFORCE-Merge Gradient for Stochastic Binary Networks
Mingzhang Yin
Mingyuan Zhou
MQ
26
11
0
30 Jul 2018
Explorations in Homeomorphic Variational Auto-Encoding
Luca Falorsi
P. D. Haan
Tim R. Davidson
Nicola De Cao
Maurice Weiler
Patrick Forré
Taco S. Cohen
BDL
DRL
28
116
0
12 Jul 2018
Pathwise Derivatives for Multivariate Distributions
M. Jankowiak
Theofanis Karaletsos
17
11
0
05 Jun 2018
Pathwise Derivatives Beyond the Reparameterization Trick
M. Jankowiak
F. Obermeyer
30
110
0
05 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
17
30
0
01 Jun 2018
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
35
121
0
28 May 2018
Implicit Reparameterization Gradients
Michael Figurnov
S. Mohamed
A. Mnih
BDL
13
230
0
22 May 2018
Variational Rejection Sampling
Aditya Grover
Ramki Gummadi
Miguel Lazaro-Gredilla
Dale Schuurmans
Stefano Ermon
BDL
15
32
0
05 Apr 2018
Hyperspherical Variational Auto-Encoders
Tim R. Davidson
Luca Falorsi
Nicola De Cao
Thomas Kipf
Jakub M. Tomczak
DRL
BDL
16
379
0
03 Apr 2018
1
2
Next