ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02415
  4. Cited By
Automatic chemical design using a data-driven continuous representation
  of molecules

Automatic chemical design using a data-driven continuous representation of molecules

7 October 2016
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
    3DV
ArXivPDFHTML

Papers citing "Automatic chemical design using a data-driven continuous representation of molecules"

50 / 833 papers shown
Title
Data-Efficient Graph Grammar Learning for Molecular Generation
Data-Efficient Graph Grammar Learning for Molecular Generation
Minghao Guo
Veronika Thost
Beichen Li
Payel Das
Jie Chen
Wojciech Matusik
43
36
0
15 Mar 2022
Magnetic Field Prediction Using Generative Adversarial Networks
Magnetic Field Prediction Using Generative Adversarial Networks
Stefan Pollok
Nataniel Olden-Jorgensen
P. S. Jørgensen
Rasmus Bjørk
GAN
AI4CE
29
15
0
14 Mar 2022
A Survey on Deep Graph Generation: Methods and Applications
A Survey on Deep Graph Generation: Methods and Applications
Yanqiao Zhu
Yuanqi Du
Yinkai Wang
Yichen Xu
Jieyu Zhang
Qiang Liu
Shu Wu
3DV
GNN
31
67
0
13 Mar 2022
Comparing representations of biological data learned with different AI
  paradigms, augmenting and cropping strategies
Comparing representations of biological data learned with different AI paradigms, augmenting and cropping strategies
A. Dmitrenko
M. M. Masiero
N. Zamboni
SSL
16
2
0
07 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using
  Randomized Priors
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
35
40
0
06 Mar 2022
Sparse Bayesian Optimization
Sparse Bayesian Optimization
Sulin Liu
Qing Feng
David Eriksson
Benjamin Letham
E. Bakshy
33
7
0
03 Mar 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
  Processes
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
21
10
0
02 Mar 2022
Multi-Objective Latent Space Optimization of Generative Molecular Design
  Models
Multi-Objective Latent Space Optimization of Generative Molecular Design Models
Nafiz Abeer
Nathan M. Urban
Ryan Weil
Francis J. Alexander
Byung-Jun Yoon
23
16
0
01 Mar 2022
Bayesian Sequential Stacking Algorithm for Concurrently Designing
  Molecules and Synthetic Reaction Networks
Bayesian Sequential Stacking Algorithm for Concurrently Designing Molecules and Synthetic Reaction Networks
Qi Zhang
Chang Liu
Stephen Wu
Ryo Yoshida
BDL
42
3
0
01 Mar 2022
Interpretable Molecular Graph Generation via Monotonic Constraints
Interpretable Molecular Graph Generation via Monotonic Constraints
Yuanqi Du
Xiaojie Guo
Amarda Shehu
Liang Zhao
68
19
0
28 Feb 2022
Improving Molecular Contrastive Learning via Faulty Negative Mitigation
  and Decomposed Fragment Contrast
Improving Molecular Contrastive Learning via Faulty Negative Mitigation and Decomposed Fragment Contrast
Yuyang Wang
Rishikesh Magar
Chen Liang
A. Farimani
46
78
0
18 Feb 2022
Molecule Generation for Drug Design: a Graph Learning Perspective
Molecule Generation for Drug Design: a Graph Learning Perspective
Nianzu Yang
Huaijin Wu
Xiaoyong Pan
Ye Yuan
Junchi Yan
22
13
0
18 Feb 2022
Knowledge-informed Molecular Learning: A Survey on Paradigm Transfer
Knowledge-informed Molecular Learning: A Survey on Paradigm Transfer
Yin Fang
Zhuo Chen
Xiaohui Fan
Qiang Zhang
51
3
0
17 Feb 2022
Graph Masked Autoencoders with Transformers
Graph Masked Autoencoders with Transformers
Sixiao Zhang
Hongxu Chen
Haoran Yang
Xiangguo Sun
Philip S. Yu
Guandong Xu
21
18
0
17 Feb 2022
Learning to Discover Medicines
Learning to Discover Medicines
T. Nguyen
Thin Nguyen
T. Tran
34
1
0
14 Feb 2022
MGCVAE: Multi-objective Inverse Design via Molecular Graph Conditional
  Variational Autoencoder
MGCVAE: Multi-objective Inverse Design via Molecular Graph Conditional Variational Autoencoder
Myeong-Sung Lee
K. Min
38
41
0
14 Feb 2022
Improving Molecular Representation Learning with Metric
  Learning-enhanced Optimal Transport
Improving Molecular Representation Learning with Metric Learning-enhanced Optimal Transport
Fang Wu
Nicolas Courty
Shuting Jin
Stan Z. Li
OOD
OT
26
8
0
13 Feb 2022
ChemicalX: A Deep Learning Library for Drug Pair Scoring
ChemicalX: A Deep Learning Library for Drug Pair Scoring
Benedek Rozemberczki
Charles Tapley Hoyt
A. Gogleva
Piotr Grabowski
Klas Karis
...
Sebastian Nilsson
M. Ughetto
Yu-Chiang Frank Wang
Tyler Derr
Benjamin M. Gyori
20
25
0
10 Feb 2022
Target-aware Molecular Graph Generation
Target-aware Molecular Graph Generation
Cheng Tan
Zhangyang Gao
Stan Z. Li
27
25
0
10 Feb 2022
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters
Luc Brogat-Motte
Rémi Flamary
Céline Brouard
Juho Rousu
Florence dÁlché-Buc
33
19
0
08 Feb 2022
Fourier Representations for Black-Box Optimization over Categorical
  Variables
Fourier Representations for Black-Box Optimization over Categorical Variables
Hamid Dadkhahi
Jesus Rios
Karthikeyan Shanmugam
Payel Das
35
11
0
08 Feb 2022
Learning Mechanically Driven Emergent Behavior with Message Passing
  Neural Networks
Learning Mechanically Driven Emergent Behavior with Message Passing Neural Networks
Peerasait Prachaseree
Emma Lejeune
PINN
AI4CE
33
11
0
03 Feb 2022
Physical Design using Differentiable Learned Simulators
Physical Design using Differentiable Learned Simulators
Kelsey R. Allen
Tatiana López-Guevara
Kimberly L. Stachenfeld
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Jessica B. Hamrick
Tobias Pfaff
AI4CE
29
42
0
01 Feb 2022
Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning
Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning
Daniel Flam-Shepherd
A. Zhigalin
A. Aspuru‐Guzik
AI4CE
12
12
0
01 Feb 2022
Regression Transformer: Concurrent sequence regression and generation
  for molecular language modeling
Regression Transformer: Concurrent sequence regression and generation for molecular language modeling
Jannis Born
Matteo Manica
13
91
0
01 Feb 2022
Autoencoding Hyperbolic Representation for Adversarial Generation
Autoencoding Hyperbolic Representation for Adversarial Generation
Eric Qu
Dongmian Zou
GAN
36
4
0
30 Jan 2022
FastFlows: Flow-Based Models for Molecular Graph Generation
FastFlows: Flow-Based Models for Molecular Graph Generation
Nathan C. Frey
V. Gadepally
Bharath Ramsundar
19
12
0
28 Jan 2022
Biases in In Silico Evaluation of Molecular Optimization Methods and
  Bias-Reduced Evaluation Methodology
Biases in In Silico Evaluation of Molecular Optimization Methods and Bias-Reduced Evaluation Methodology
Hiroshi Kajino
Kohei Miyaguchi
Takayuki Osogami
59
1
0
28 Jan 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
61
69
0
28 Jan 2022
ReLSO: A Transformer-based Model for Latent Space Optimization and
  Generation of Proteins
ReLSO: A Transformer-based Model for Latent Space Optimization and Generation of Proteins
Egbert Castro
Abhinav Godavarthi
Julian Rubinfien
Kevin B. Givechian
Dhananjay Bhaskar
Smita Krishnaswamy
46
5
0
24 Jan 2022
Variational Autoencoder based Metamodeling for Multi-Objective Topology
  Optimization of Electrical Machines
Variational Autoencoder based Metamodeling for Multi-Objective Topology Optimization of Electrical Machines
Vivek Parekh
D. Flore
S. Schöps
AI4CE
11
10
0
21 Jan 2022
Improving VAE based molecular representations for compound property
  prediction
Improving VAE based molecular representations for compound property prediction
Ani Tevosyan
L. Khondkaryan
Hrant Khachatrian
G. Tadevosyan
L. Apresyan
N. Babayan
H. Stopper
Zaven Navoyan
DRL
18
9
0
13 Jan 2022
On the Size and Width of the Decoder of a Boolean Threshold Autoencoder
On the Size and Width of the Decoder of a Boolean Threshold Autoencoder
Tatsuya Akutsu
A. Melkman
AI4CE
11
1
0
21 Dec 2021
A Binded VAE for Inorganic Material Generation
A Binded VAE for Inorganic Material Generation
Fouad Oubari
Antoine de Mathelin
Rodrigue Décatoire
Mathilde Mougeot
11
2
0
17 Dec 2021
A molecular generative model with genetic algorithm and tree search for
  cancer samples
A molecular generative model with genetic algorithm and tree search for cancer samples
Sejin Park
Hyunju Lee
21
1
0
16 Dec 2021
Permutation Equivariant Generative Adversarial Networks for Graphs
Permutation Equivariant Generative Adversarial Networks for Graphs
Yoann Boget
Magda Gregorova
Alexandros Kalousis
GAN
16
0
0
07 Dec 2021
Genetic Algorithm for Constrained Molecular Inverse Design
Genetic Algorithm for Constrained Molecular Inverse Design
Yurim Lee
Gydam Choi
Minsug Yoon
Cheongwon Kim
29
1
0
07 Dec 2021
Keeping it Simple: Language Models can learn Complex Molecular
  Distributions
Keeping it Simple: Language Models can learn Complex Molecular Distributions
Daniel Flam-Shepherd
Kevin Zhu
A. Aspuru‐Guzik
133
142
0
06 Dec 2021
Sample-Efficient Generation of Novel Photo-acid Generator Molecules
  using a Deep Generative Model
Sample-Efficient Generation of Novel Photo-acid Generator Molecules using a Deep Generative Model
Samuel C. Hoffman
Vijil Chenthamarakshan
Dmitry Zubarev
Daniel P. Sanders
Payel Das
44
5
0
02 Dec 2021
Bayesian Optimization over Permutation Spaces
Bayesian Optimization over Permutation Spaces
Aryan Deshwal
Syrine Belakaria
J. Doppa
D. Kim
22
21
0
02 Dec 2021
HelixMO: Sample-Efficient Molecular Optimization in Scene-Sensitive
  Latent Space
HelixMO: Sample-Efficient Molecular Optimization in Scene-Sensitive Latent Space
Zhiyuan Chen
Xiaomin Fang
Zixu Hua
Yueyang Huang
Fan Wang
Hua Wu
MedIm
27
2
0
30 Nov 2021
Molecular Attributes Transfer from Non-Parallel Data
Molecular Attributes Transfer from Non-Parallel Data
Shuangjia Zheng
Ying Song
Zhang Pan
Chengtao Li
Le Song
Yuedong Yang
27
0
0
30 Nov 2021
Learning Conditional Invariance through Cycle Consistency
Learning Conditional Invariance through Cycle Consistency
M. Samarin
V. Nesterov
Mario Wieser
Aleksander Wieczorek
S. Parbhoo
Volker Roth
39
3
0
25 Nov 2021
LSP : Acceleration and Regularization of Graph Neural Networks via
  Locality Sensitive Pruning of Graphs
LSP : Acceleration and Regularization of Graph Neural Networks via Locality Sensitive Pruning of Graphs
Eitan Kosman
J. Oren
Dotan Di Castro
40
0
0
10 Nov 2021
Structure-aware generation of drug-like molecules
Structure-aware generation of drug-like molecules
Pavol Drotár
Arian R. Jamasb
Ben Day
Cătălina Cangea
Pietro Lio
39
17
0
07 Nov 2021
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark
  Suite for Lasso
LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso
Kenan Sehic
Alexandre Gramfort
Joseph Salmon
Luigi Nardi
22
35
0
04 Nov 2021
Combining Latent Space and Structured Kernels for Bayesian Optimization
  over Combinatorial Spaces
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces
Aryan Deshwal
J. Doppa
BDL
35
42
0
01 Nov 2021
Decoupled coordinates for machine learning-based molecular fragment
  linking
Decoupled coordinates for machine learning-based molecular fragment linking
Markus Fleck
Noah Weber
Christopher Trummer
25
3
0
01 Nov 2021
Conditioning Sparse Variational Gaussian Processes for Online
  Decision-making
Conditioning Sparse Variational Gaussian Processes for Online Decision-making
Wesley J. Maddox
Samuel Stanton
A. Wilson
24
28
0
28 Oct 2021
A machine learning approach for fighting the curse of dimensionality in
  global optimization
A machine learning approach for fighting the curse of dimensionality in global optimization
J. Schumann
Alejandro M. Aragón
28
2
0
28 Oct 2021
Previous
123...8910...151617
Next