ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02415
  4. Cited By
Automatic chemical design using a data-driven continuous representation
  of molecules

Automatic chemical design using a data-driven continuous representation of molecules

7 October 2016
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
    3DV
ArXivPDFHTML

Papers citing "Automatic chemical design using a data-driven continuous representation of molecules"

50 / 832 papers shown
Title
A Two-Step Graph Convolutional Decoder for Molecule Generation
A Two-Step Graph Convolutional Decoder for Molecule Generation
Xavier Bresson
T. Laurent
17
60
0
08 Jun 2019
An Introduction to Variational Autoencoders
An Introduction to Variational Autoencoders
Diederik P. Kingma
Max Welling
BDL
SSL
DRL
33
2,290
0
06 Jun 2019
Probabilistic hypergraph grammars for efficient molecular optimization
Probabilistic hypergraph grammars for efficient molecular optimization
E. Kraev
Mark Harley
21
1
0
05 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
35
201
0
02 Jun 2019
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular
  string representation
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
Mario Krenn
Florian Hase
AkshatKumar Nigam
Pascal Friederich
Alán Aspuru-Guzik
13
70
0
31 May 2019
Scaffold-based molecular design using graph generative model
Scaffold-based molecular design using graph generative model
Jaechang Lim
Sang-Yeon Hwang
Seungsu Kim
Seokhyun Moon
Woo Youn Kim
30
17
0
31 May 2019
Deep Bayesian Optimization on Attributed Graphs
Deep Bayesian Optimization on Attributed Graphs
Jiaxu Cui
Bo Yang
Xia Hu
11
6
0
31 May 2019
MolecularRNN: Generating realistic molecular graphs with optimized
  properties
MolecularRNN: Generating realistic molecular graphs with optimized properties
Mariya Popova
Mykhailo Shvets
Junier Oliva
Olexandr Isayev
GNN
35
164
0
31 May 2019
All SMILES Variational Autoencoder
All SMILES Variational Autoencoder
Zaccary Alperstein
Artem Cherkasov
J. Rolfe
DRL
19
38
0
30 May 2019
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear
  Dynamical Systems
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical Systems
Geoffrey Roeder
Paul K. Grant
Andrew Phillips
Neil Dalchau
Edward Meeds
17
23
0
28 May 2019
Leveraging binding-site structure for drug discovery with point-cloud
  methods
Leveraging binding-site structure for drug discovery with point-cloud methods
Vincent Mallet
Carlos G. Oliver
N. Moitessier
J. Waldispühl
16
7
0
28 May 2019
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
Kaushalya Madhawa
Katushiko Ishiguro
Kosuke Nakago
Motoki Abe
BDL
14
188
0
28 May 2019
Learning by stochastic serializations
Learning by stochastic serializations
Pablo Strasser
S. Armand
Stéphane Marchand-Maillet
Alexandros Kalousis
21
0
0
27 May 2019
Adversarial Learned Molecular Graph Inference and Generation
Adversarial Learned Molecular Graph Inference and Generation
Sebastian Polsterl
Christian Wachinger
GAN
30
7
0
24 May 2019
A COLD Approach to Generating Optimal Samples
A COLD Approach to Generating Optimal Samples
Omar Mahmood
José Miguel Hernández-Lobato
11
8
0
23 May 2019
Accelerated Discovery of Sustainable Building Materials
Accelerated Discovery of Sustainable Building Materials
Xiou Ge
Richard Goodwin
J. Gregory
R. Kirchain
Joana Maria
L. Varshney
8
6
0
20 May 2019
Affine Variational Autoencoders: An Efficient Approach for Improving
  Generalization and Robustness to Distribution Shift
Affine Variational Autoencoders: An Efficient Approach for Improving Generalization and Robustness to Distribution Shift
Rene Bidart
A. Wong
DRL
OOD
11
5
0
13 May 2019
A Deep Generative Model for Graph Layout
A Deep Generative Model for Graph Layout
Oh-Hyun Kwon
K. Ma
DRL
GNN
21
48
0
27 Apr 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
32
196
0
24 Apr 2019
A survey on Big Data and Machine Learning for Chemistry
A survey on Big Data and Machine Learning for Chemistry
J. F. Rodrigues
L. Florea
Maria Cristina Ferreira de Oliveira
D. Diamond
Osvaldo N. Oliveira
AI4CE
11
6
0
23 Apr 2019
Decoding Molecular Graph Embeddings with Reinforcement Learning
Decoding Molecular Graph Embeddings with Reinforcement Learning
S. Kearnes
Li Li
Patrick F. Riley
OffRL
GNN
6
27
0
18 Apr 2019
Feature-Based Interpolation and Geodesics in the Latent Spaces of
  Generative Models
Feature-Based Interpolation and Geodesics in the Latent Spaces of Generative Models
Lukasz Struski
M. Sadowski
Tomasz Danel
Jacek Tabor
Igor T. Podolak
DiffM
28
7
0
06 Apr 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
17
1,288
0
02 Apr 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
34
269
0
29 Mar 2019
Uncertainty quantification of molecular property prediction with
  Bayesian neural networks
Uncertainty quantification of molecular property prediction with Bayesian neural networks
Seongok Ryu
Yongchan Kwon
W. Kim
BDL
11
17
0
20 Mar 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE
3DV
27
326
0
11 Mar 2019
High-dimensional Bayesian optimization using low-dimensional feature
  spaces
High-dimensional Bayesian optimization using low-dimensional feature spaces
Riccardo Moriconi
M. Deisenroth
K. S. S. Kumar
6
11
0
27 Feb 2019
Atomistic structure learning
Atomistic structure learning
M. Jørgensen
H. L. Mortensen
S. A. Meldgaard
E. L. Kolsbjerg
Thomas L. Jacobsen
K. H. Sørensen
B. Hammer
AI4CE
15
35
0
27 Feb 2019
Probabilistic Generative Deep Learning for Molecular Design
Probabilistic Generative Deep Learning for Molecular Design
Daniel T. Chang
BDL
AI4CE
47
7
0
11 Feb 2019
Clustering Bioactive Molecules in 3D Chemical Space with Unsupervised
  Deep Learning
Clustering Bioactive Molecules in 3D Chemical Space with Unsupervised Deep Learning
Chu Qin
Ying Tan
Tian Jin
Xian Zeng
Xingxing Qi
...
Peng Zhang
F. Zhu
Hongping Zhao
Yu Yang Jiang
Yuzong Chen
26
0
0
09 Feb 2019
Mol-CycleGAN - a generative model for molecular optimization
Mol-CycleGAN - a generative model for molecular optimization
Łukasz Maziarka
Agnieszka Pocha
Jan Kaczmarczyk
Krzysztof Rataj
M. Warchoł
25
241
0
06 Feb 2019
Bayesian semi-supervised learning for uncertainty-calibrated prediction
  of molecular properties and active learning
Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning
Yao Zhang
A. Lee
19
101
0
03 Feb 2019
Learnable Embedding Space for Efficient Neural Architecture Compression
Learnable Embedding Space for Efficient Neural Architecture Compression
Shengcao Cao
Xiaofang Wang
Kris M. Kitani
6
43
0
01 Feb 2019
Conditioning by adaptive sampling for robust design
Conditioning by adaptive sampling for robust design
David H. Brookes
Hahnbeom Park
Jennifer Listgarten
19
193
0
29 Jan 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their
  Embeddings and Back
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
29
1
0
24 Jan 2019
Conditional deep surrogate models for stochastic, high-dimensional, and
  multi-fidelity systems
Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems
Yibo Yang
P. Perdikaris
SyDa
BDL
AI4CE
29
55
0
15 Jan 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
159
8,362
0
03 Jan 2019
Inorganic Materials Synthesis Planning with Literature-Trained Neural
  Networks
Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks
Edward J. Kim
Z. Jensen
Alexander van Grootel
Kevin Huang
Matthew Staib
...
Haw-Shiuan Chang
Emma Strubell
Andrew McCallum
Stefanie Jegelka
E. Olivetti
14
115
0
31 Dec 2018
Drug cell line interaction prediction
Drug cell line interaction prediction
Pengfei Liu
23
114
0
28 Dec 2018
Learning Latent Subspaces in Variational Autoencoders
Learning Latent Subspaces in Variational Autoencoders
Jack Klys
Jake C. Snell
R. Zemel
SSL
DRL
11
139
0
14 Dec 2018
Adversarial Autoencoders with Constant-Curvature Latent Manifolds
Adversarial Autoencoders with Constant-Curvature Latent Manifolds
Daniele Grattarola
L. Livi
Cesare Alippi
BDL
11
27
0
11 Dec 2018
Coarse-Graining Auto-Encoders for Molecular Dynamics
Coarse-Graining Auto-Encoders for Molecular Dynamics
Wujie Wang
Rafael Gómez-Bombarelli
AI4CE
19
165
0
06 Dec 2018
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
Boltzmann Generators -- Sampling Equilibrium States of Many-Body Systems
  with Deep Learning
Boltzmann Generators -- Sampling Equilibrium States of Many-Body Systems with Deep Learning
Frank Noé
Simon Olsson
Jonas Köhler
Hao Wu
18
32
0
04 Dec 2018
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
Discovering Molecular Functional Groups Using Graph Convolutional Neural
  Networks
Discovering Molecular Functional Groups Using Graph Convolutional Neural Networks
Phillip E. Pope
Soheil Kolouri
Mohammad Rostami
Charles E. Martin
Heiko Hoffmann
GNN
35
14
0
01 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
197
638
0
29 Nov 2018
Grammars and reinforcement learning for molecule optimization
Grammars and reinforcement learning for molecule optimization
E. Kraev
20
6
0
27 Nov 2018
DEFactor: Differentiable Edge Factorization-based Probabilistic Graph
  Generation
DEFactor: Differentiable Edge Factorization-based Probabilistic Graph Generation
Rim Assouel
Mohamed Ahmed
Marwin H. S. Segler
Amir Saffari
Yoshua Bengio
24
54
0
24 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
692
0
22 Nov 2018
Previous
123...14151617
Next