Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.02415
Cited By
Automatic chemical design using a data-driven continuous representation of molecules
7 October 2016
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
3DV
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Automatic chemical design using a data-driven continuous representation of molecules"
50 / 832 papers shown
Title
Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A Survey and Vision
Nathaniel Hudson
J. G. Pauloski
Matt Baughman
Alok V. Kamatar
Mansi Sakarvadia
...
Owen Price Skelly
Ben Blaiszik
Rick L. Stevens
Kyle Chard
Ian Foster
MedIm
27
8
0
05 Feb 2024
Overcoming Order in Autoregressive Graph Generation
Edo Cohen-Karlik
Eyal Rozenberg
Daniel Freedman
34
1
0
04 Feb 2024
Co-orchestration of Multiple Instruments to Uncover Structure-Property Relationships in Combinatorial Libraries
B. Slautin
Utkarsh Pratiush
Ilia N. Ivanov
Yongtao Liu
Rohit K. Pant
Xiaohang Zhang
Ichiro Takeuchi
M. Ziatdinov
Sergei V. Kalinin
28
2
0
03 Feb 2024
Clustering Molecular Energy Landscapes by Adaptive Network Embedding
Paula Mercurio
Di Liu
11
0
0
19 Jan 2024
Simulation Based Bayesian Optimization
Roi Naveiro
Becky Tang
27
0
0
19 Jan 2024
Attention Based Molecule Generation via Hierarchical Variational Autoencoder
Divahar Sivanesan
BDL
GAN
11
0
0
18 Jan 2024
Through the Dual-Prism: A Spectral Perspective on Graph Data Augmentation for Graph Classification
Yutong Xia
Runpeng Yu
Keli Zhang
Xavier Bresson
Xinchao Wang
Roger Zimmermann
39
4
0
18 Jan 2024
FREED++: Improving RL Agents for Fragment-Based Molecule Generation by Thorough Reproduction
Alexander Telepov
Artem Tsypin
Kuzma Khrabrov
Sergey Yakukhnov
Pavel Strashnov
...
Egor Rumiantsev
Daniel Ezhov
Manvel Avetisian
Olga Popova
Artur Kadurin
27
4
0
18 Jan 2024
Functional Graphical Models: Structure Enables Offline Data-Driven Optimization
J. Kuba
Masatoshi Uehara
Pieter Abbeel
Sergey Levine
AI4CE
23
4
0
08 Jan 2024
From Function to Distribution Modeling: A PAC-Generative Approach to Offline Optimization
Qiang Zhang
Ruida Zhou
Yang Shen
Tie Liu
OffRL
41
1
0
04 Jan 2024
Accelerating Black-Box Molecular Property Optimization by Adaptively Learning Sparse Subspaces
Farshud Sorourifar
Thomas Banker
J. Paulson
24
2
0
02 Jan 2024
Classifier-free graph diffusion for molecular property targeting
Matteo Ninniri
Marco Podda
Davide Bacciu
40
5
0
28 Dec 2023
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms
Farshed Abdukhakimov
Chulu Xiang
Dmitry Kamzolov
Robert Mansel Gower
Martin Takáč
43
2
0
28 Dec 2023
PG-LBO: Enhancing High-Dimensional Bayesian Optimization with Pseudo-Label and Gaussian Process Guidance
Taicai Chen
Yue Duan
Dong Li
Lei Qi
Yinghuan Shi
Yang Gao
BDL
DRL
29
5
0
28 Dec 2023
Olfactory Label Prediction on Aroma-Chemical Pairs
Laura Sisson
Aryan Amit Barsainyan
Mrityunjay Sharma
Ritesh Kumar
11
0
0
26 Dec 2023
VAE for Modified 1-Hot Generative Materials Modeling, A Step Towards Inverse Material Design
Khalid El-Awady
3DV
26
0
0
25 Dec 2023
De novo Drug Design using Reinforcement Learning with Multiple GPT Agents
Xiuyuan Hu
Guoqing Liu
Yang Zhao
Hao Zhang
23
20
0
21 Dec 2023
Pre-training of Molecular GNNs via Conditional Boltzmann Generator
Daiki Koge
N. Ono
Shigehiko Kanaya
AI4CE
16
0
0
20 Dec 2023
FSscore: A Machine Learning-based Synthetic Feasibility Score Leveraging Human Expertise
Rebecca M. Neeser
Bruno Correia
Philippe Schwaller
21
1
0
20 Dec 2023
Stochastic Bayesian Optimization with Unknown Continuous Context Distribution via Kernel Density Estimation
Xiaobin Huang
Lei Song
Ke Xue
Chao Qian
34
3
0
16 Dec 2023
Holistic chemical evaluation reveals pitfalls in reaction prediction models
Victor Sabanza Gil
Andres M Bran
Malte Franke
Remi Schlama
J. Luterbacher
Philippe Schwaller
ELM
33
1
0
14 Dec 2023
Pathway to a fully data-driven geotechnics: lessons from materials informatics
Stephen Wu
Yu Otake
Yosuke Higo
Ikumasa Yoshida
AI4CE
24
4
0
01 Dec 2023
PyTorch Geometric High Order: A Unified Library for High Order Graph Neural Network
Xiyuan Wang
Muhan Zhang
AI4CE
23
3
0
28 Nov 2023
LLamol: A Dynamic Multi-Conditional Generative Transformer for De Novo Molecular Design
Niklas Dobberstein
Astrid Maass
J. Hamaekers
31
5
0
24 Nov 2023
nach0: Multimodal Natural and Chemical Languages Foundation Model
M. Livne
Z. Miftahutdinov
E. Tutubalina
Maksim Kuznetsov
Daniil Polykovskiy
...
Aastha Jhunjhunwala
Anthony Costa
Alex Aliper
Alán Aspuru-Guzik
Alex Zhavoronkov
AI4CE
27
12
0
21 Nov 2023
Beyond the training set: an intuitive method for detecting distribution shift in model-based optimization
Farhan N. Damani
David H. Brookes
Theodore Sternlieb
Cameron Webster
Stephen Malina
Rishi Jajoo
Kathy Lin
Sam Sinai
OffRL
27
3
0
09 Nov 2023
STRIDE: Structure-guided Generation for Inverse Design of Molecules
Shehtab Zaman
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
29
1
0
06 Nov 2023
Joint Composite Latent Space Bayesian Optimization
Natalie Maus
Zhiyuan Jerry Lin
Maximilian Balandat
E. Bakshy
BDL
33
2
0
03 Nov 2023
Bayesian Optimization of Function Networks with Partial Evaluations
Poompol Buathong
Jiayue Wan
Raul Astudillo
Sam Daulton
Maximilian Balandat
P. Frazier
26
2
0
03 Nov 2023
AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways via Contrastive Learning
Mohammadamin Tavakoli
Y. T. T. Chiu
Alexander Shmakov
Ann Marie Carlton
David Van Vranken
Pierre Baldi
25
2
0
02 Nov 2023
Advancing Bayesian Optimization via Learning Correlated Latent Space
Seunghun Lee
Jaewon Chu
S. Kim
Juyeon Ko
Hyunwoo J. Kim
BDL
49
6
0
31 Oct 2023
Efficient Subgraph GNNs by Learning Effective Selection Policies
Beatrice Bevilacqua
Moshe Eliasof
E. Meirom
Bruno Ribeiro
Haggai Maron
20
13
0
30 Oct 2023
Re-evaluating Retrosynthesis Algorithms with Syntheseus
Krzysztof Maziarz
Austin Tripp
Guoqing Liu
Megan Stanley
Shufang Xie
Piotr Gaiñski
Philipp Seidl
Marwin H. S. Segler
ELM
29
13
0
30 Oct 2023
Learning Invariant Molecular Representation in Latent Discrete Space
Zhuang Xiang
Qiang Zhang
Keyan Ding
Yatao Bian
Xiao Wang
Jingsong Lv
Hongyang Chen
Huajun Chen
OOD
26
16
0
22 Oct 2023
Conformal Drug Property Prediction with Density Estimation under Covariate Shift
Siddhartha Laghuvarapu
Zhen Lin
Jimeng Sun
20
4
0
18 Oct 2023
Gotta be SAFE: A New Framework for Molecular Design
Emmanuel Noutahi
Cristian Gabellini
Michael Craig
Jonathan S.C Lim
Prudencio Tossou
29
16
0
16 Oct 2023
A Deep Neural Network -- Mechanistic Hybrid Model to Predict Pharmacokinetics in Rat
Florian Führer
Andrea Gruber
Holger Diedam
A. Göller
Stephan Menz
S. Schneckener
28
3
0
13 Oct 2023
Kernel-Elastic Autoencoder for Molecular Design
Haote Li
Yu Shee
B. Allen
F. Maschietto
Victor S. Batista
21
5
0
12 Oct 2023
Transformers and Large Language Models for Chemistry and Drug Discovery
Andres M Bran
Philippe Schwaller
LM&MA
MedIm
AI4CE
38
14
0
09 Oct 2023
Molecular De Novo Design through Transformer-based Reinforcement Learning
Pengcheng Xu
Tao Feng
Tianfan Fu
Siddhartha Laghuvarapu
Jimeng Sun
22
1
0
09 Oct 2023
Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel Approach to Generating Molecules with Desirable Properties
Siyuan Guo
Jihong Guan
Shuigeng Zhou
38
3
0
05 Oct 2023
Molecule Design by Latent Prompt Transformer
Deqian Kong
Yuhao Huang
Jianwen Xie
Ying Nian Wu
17
3
0
05 Oct 2023
Searching for High-Value Molecules Using Reinforcement Learning and Transformers
Raj Ghugare
Santiago Miret
Adriana Hugessen
Mariano Phielipp
Glen Berseth
11
16
0
04 Oct 2023
A Deep Instance Generative Framework for MILP Solvers Under Limited Data Availability
Zijie Geng
Xijun Li
Jie Wang
Xiao Li
Yongdong Zhang
Feng Wu
46
18
0
04 Oct 2023
SALSA: Semantically-Aware Latent Space Autoencoder
Kathryn E. Kirchoff
Travis Maxfield
Alexander Tropsha
Shawn M. Gomez
18
2
0
04 Oct 2023
De Novo Drug Design with Joint Transformers
Adam Izdebski
Ewelina Węglarz-Tomczak
Ewa Szczurek
Jakub M. Tomczak
ViT
23
3
0
03 Oct 2023
MHG-GNN: Combination of Molecular Hypergraph Grammar with Graph Neural Network
Akihiro Kishimoto
Hiroshi Kajino
Masataka Hirose
Junta Fuchiwaki
Indra Priyadarsini
Lisa Hamada
Hajime Shinohara
D. Nakano
Seiji Takeda
AI4CE
34
4
0
28 Sep 2023
Language models in molecular discovery
Chaoqi Wang
Yibo Jiang
Chenghao Yang
Han Liu
Yuxin Chen
25
7
0
28 Sep 2023
Understanding the Structure of QM7b and QM9 Quantum Mechanical Datasets Using Unsupervised Learning
Julio J. Valdés
A. Tchagang
20
2
0
25 Sep 2023
Beam Enumeration: Probabilistic Explainability For Sample Efficient Self-conditioned Molecular Design
Jeff Guo
P. Schwaller
32
6
0
25 Sep 2023
Previous
1
2
3
4
5
...
15
16
17
Next