ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02415
  4. Cited By
Automatic chemical design using a data-driven continuous representation
  of molecules

Automatic chemical design using a data-driven continuous representation of molecules

7 October 2016
Rafael Gómez-Bombarelli
Jennifer N. Wei
David Duvenaud
José Miguel Hernández-Lobato
Benjamín Sánchez-Lengeling
Dennis Sheberla
J. Aguilera-Iparraguirre
Timothy D. Hirzel
Ryan P. Adams
Alán Aspuru-Guzik
    3DV
ArXivPDFHTML

Papers citing "Automatic chemical design using a data-driven continuous representation of molecules"

50 / 832 papers shown
Title
Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A
  Survey and Vision
Trillion Parameter AI Serving Infrastructure for Scientific Discovery: A Survey and Vision
Nathaniel Hudson
J. G. Pauloski
Matt Baughman
Alok V. Kamatar
Mansi Sakarvadia
...
Owen Price Skelly
Ben Blaiszik
Rick L. Stevens
Kyle Chard
Ian Foster
MedIm
27
8
0
05 Feb 2024
Overcoming Order in Autoregressive Graph Generation
Overcoming Order in Autoregressive Graph Generation
Edo Cohen-Karlik
Eyal Rozenberg
Daniel Freedman
34
1
0
04 Feb 2024
Co-orchestration of Multiple Instruments to Uncover Structure-Property
  Relationships in Combinatorial Libraries
Co-orchestration of Multiple Instruments to Uncover Structure-Property Relationships in Combinatorial Libraries
B. Slautin
Utkarsh Pratiush
Ilia N. Ivanov
Yongtao Liu
Rohit K. Pant
Xiaohang Zhang
Ichiro Takeuchi
M. Ziatdinov
Sergei V. Kalinin
28
2
0
03 Feb 2024
Clustering Molecular Energy Landscapes by Adaptive Network Embedding
Clustering Molecular Energy Landscapes by Adaptive Network Embedding
Paula Mercurio
Di Liu
11
0
0
19 Jan 2024
Simulation Based Bayesian Optimization
Simulation Based Bayesian Optimization
Roi Naveiro
Becky Tang
27
0
0
19 Jan 2024
Attention Based Molecule Generation via Hierarchical Variational
  Autoencoder
Attention Based Molecule Generation via Hierarchical Variational Autoencoder
Divahar Sivanesan
BDL
GAN
11
0
0
18 Jan 2024
Through the Dual-Prism: A Spectral Perspective on Graph Data Augmentation for Graph Classification
Through the Dual-Prism: A Spectral Perspective on Graph Data Augmentation for Graph Classification
Yutong Xia
Runpeng Yu
Keli Zhang
Xavier Bresson
Xinchao Wang
Roger Zimmermann
39
4
0
18 Jan 2024
FREED++: Improving RL Agents for Fragment-Based Molecule Generation by
  Thorough Reproduction
FREED++: Improving RL Agents for Fragment-Based Molecule Generation by Thorough Reproduction
Alexander Telepov
Artem Tsypin
Kuzma Khrabrov
Sergey Yakukhnov
Pavel Strashnov
...
Egor Rumiantsev
Daniel Ezhov
Manvel Avetisian
Olga Popova
Artur Kadurin
27
4
0
18 Jan 2024
Functional Graphical Models: Structure Enables Offline Data-Driven
  Optimization
Functional Graphical Models: Structure Enables Offline Data-Driven Optimization
J. Kuba
Masatoshi Uehara
Pieter Abbeel
Sergey Levine
AI4CE
23
4
0
08 Jan 2024
From Function to Distribution Modeling: A PAC-Generative Approach to
  Offline Optimization
From Function to Distribution Modeling: A PAC-Generative Approach to Offline Optimization
Qiang Zhang
Ruida Zhou
Yang Shen
Tie Liu
OffRL
41
1
0
04 Jan 2024
Accelerating Black-Box Molecular Property Optimization by Adaptively
  Learning Sparse Subspaces
Accelerating Black-Box Molecular Property Optimization by Adaptively Learning Sparse Subspaces
Farshud Sorourifar
Thomas Banker
J. Paulson
24
2
0
02 Jan 2024
Classifier-free graph diffusion for molecular property targeting
Classifier-free graph diffusion for molecular property targeting
Matteo Ninniri
Marco Podda
Davide Bacciu
40
5
0
28 Dec 2023
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant
  Stochastic Algorithms
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms
Farshed Abdukhakimov
Chulu Xiang
Dmitry Kamzolov
Robert Mansel Gower
Martin Takáč
43
2
0
28 Dec 2023
PG-LBO: Enhancing High-Dimensional Bayesian Optimization with
  Pseudo-Label and Gaussian Process Guidance
PG-LBO: Enhancing High-Dimensional Bayesian Optimization with Pseudo-Label and Gaussian Process Guidance
Taicai Chen
Yue Duan
Dong Li
Lei Qi
Yinghuan Shi
Yang Gao
BDL
DRL
29
5
0
28 Dec 2023
Olfactory Label Prediction on Aroma-Chemical Pairs
Olfactory Label Prediction on Aroma-Chemical Pairs
Laura Sisson
Aryan Amit Barsainyan
Mrityunjay Sharma
Ritesh Kumar
11
0
0
26 Dec 2023
VAE for Modified 1-Hot Generative Materials Modeling, A Step Towards
  Inverse Material Design
VAE for Modified 1-Hot Generative Materials Modeling, A Step Towards Inverse Material Design
Khalid El-Awady
3DV
26
0
0
25 Dec 2023
De novo Drug Design using Reinforcement Learning with Multiple GPT
  Agents
De novo Drug Design using Reinforcement Learning with Multiple GPT Agents
Xiuyuan Hu
Guoqing Liu
Yang Zhao
Hao Zhang
23
20
0
21 Dec 2023
Pre-training of Molecular GNNs via Conditional Boltzmann Generator
Pre-training of Molecular GNNs via Conditional Boltzmann Generator
Daiki Koge
N. Ono
Shigehiko Kanaya
AI4CE
16
0
0
20 Dec 2023
FSscore: A Machine Learning-based Synthetic Feasibility Score Leveraging
  Human Expertise
FSscore: A Machine Learning-based Synthetic Feasibility Score Leveraging Human Expertise
Rebecca M. Neeser
Bruno Correia
Philippe Schwaller
21
1
0
20 Dec 2023
Stochastic Bayesian Optimization with Unknown Continuous Context
  Distribution via Kernel Density Estimation
Stochastic Bayesian Optimization with Unknown Continuous Context Distribution via Kernel Density Estimation
Xiaobin Huang
Lei Song
Ke Xue
Chao Qian
34
3
0
16 Dec 2023
Holistic chemical evaluation reveals pitfalls in reaction prediction
  models
Holistic chemical evaluation reveals pitfalls in reaction prediction models
Victor Sabanza Gil
Andres M Bran
Malte Franke
Remi Schlama
J. Luterbacher
Philippe Schwaller
ELM
33
1
0
14 Dec 2023
Pathway to a fully data-driven geotechnics: lessons from materials
  informatics
Pathway to a fully data-driven geotechnics: lessons from materials informatics
Stephen Wu
Yu Otake
Yosuke Higo
Ikumasa Yoshida
AI4CE
24
4
0
01 Dec 2023
PyTorch Geometric High Order: A Unified Library for High Order Graph
  Neural Network
PyTorch Geometric High Order: A Unified Library for High Order Graph Neural Network
Xiyuan Wang
Muhan Zhang
AI4CE
23
3
0
28 Nov 2023
LLamol: A Dynamic Multi-Conditional Generative Transformer for De Novo
  Molecular Design
LLamol: A Dynamic Multi-Conditional Generative Transformer for De Novo Molecular Design
Niklas Dobberstein
Astrid Maass
J. Hamaekers
31
5
0
24 Nov 2023
nach0: Multimodal Natural and Chemical Languages Foundation Model
nach0: Multimodal Natural and Chemical Languages Foundation Model
M. Livne
Z. Miftahutdinov
E. Tutubalina
Maksim Kuznetsov
Daniil Polykovskiy
...
Aastha Jhunjhunwala
Anthony Costa
Alex Aliper
Alán Aspuru-Guzik
Alex Zhavoronkov
AI4CE
27
12
0
21 Nov 2023
Beyond the training set: an intuitive method for detecting distribution
  shift in model-based optimization
Beyond the training set: an intuitive method for detecting distribution shift in model-based optimization
Farhan N. Damani
David H. Brookes
Theodore Sternlieb
Cameron Webster
Stephen Malina
Rishi Jajoo
Kathy Lin
Sam Sinai
OffRL
27
3
0
09 Nov 2023
STRIDE: Structure-guided Generation for Inverse Design of Molecules
STRIDE: Structure-guided Generation for Inverse Design of Molecules
Shehtab Zaman
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
29
1
0
06 Nov 2023
Joint Composite Latent Space Bayesian Optimization
Joint Composite Latent Space Bayesian Optimization
Natalie Maus
Zhiyuan Jerry Lin
Maximilian Balandat
E. Bakshy
BDL
33
2
0
03 Nov 2023
Bayesian Optimization of Function Networks with Partial Evaluations
Bayesian Optimization of Function Networks with Partial Evaluations
Poompol Buathong
Jiayue Wan
Raul Astudillo
Sam Daulton
Maximilian Balandat
P. Frazier
26
2
0
03 Nov 2023
AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways
  via Contrastive Learning
AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways via Contrastive Learning
Mohammadamin Tavakoli
Y. T. T. Chiu
Alexander Shmakov
Ann Marie Carlton
David Van Vranken
Pierre Baldi
25
2
0
02 Nov 2023
Advancing Bayesian Optimization via Learning Correlated Latent Space
Advancing Bayesian Optimization via Learning Correlated Latent Space
Seunghun Lee
Jaewon Chu
S. Kim
Juyeon Ko
Hyunwoo J. Kim
BDL
49
6
0
31 Oct 2023
Efficient Subgraph GNNs by Learning Effective Selection Policies
Efficient Subgraph GNNs by Learning Effective Selection Policies
Beatrice Bevilacqua
Moshe Eliasof
E. Meirom
Bruno Ribeiro
Haggai Maron
20
13
0
30 Oct 2023
Re-evaluating Retrosynthesis Algorithms with Syntheseus
Re-evaluating Retrosynthesis Algorithms with Syntheseus
Krzysztof Maziarz
Austin Tripp
Guoqing Liu
Megan Stanley
Shufang Xie
Piotr Gaiñski
Philipp Seidl
Marwin H. S. Segler
ELM
29
13
0
30 Oct 2023
Learning Invariant Molecular Representation in Latent Discrete Space
Learning Invariant Molecular Representation in Latent Discrete Space
Zhuang Xiang
Qiang Zhang
Keyan Ding
Yatao Bian
Xiao Wang
Jingsong Lv
Hongyang Chen
Huajun Chen
OOD
26
16
0
22 Oct 2023
Conformal Drug Property Prediction with Density Estimation under
  Covariate Shift
Conformal Drug Property Prediction with Density Estimation under Covariate Shift
Siddhartha Laghuvarapu
Zhen Lin
Jimeng Sun
20
4
0
18 Oct 2023
Gotta be SAFE: A New Framework for Molecular Design
Gotta be SAFE: A New Framework for Molecular Design
Emmanuel Noutahi
Cristian Gabellini
Michael Craig
Jonathan S.C Lim
Prudencio Tossou
29
16
0
16 Oct 2023
A Deep Neural Network -- Mechanistic Hybrid Model to Predict
  Pharmacokinetics in Rat
A Deep Neural Network -- Mechanistic Hybrid Model to Predict Pharmacokinetics in Rat
Florian Führer
Andrea Gruber
Holger Diedam
A. Göller
Stephan Menz
S. Schneckener
28
3
0
13 Oct 2023
Kernel-Elastic Autoencoder for Molecular Design
Kernel-Elastic Autoencoder for Molecular Design
Haote Li
Yu Shee
B. Allen
F. Maschietto
Victor S. Batista
21
5
0
12 Oct 2023
Transformers and Large Language Models for Chemistry and Drug Discovery
Transformers and Large Language Models for Chemistry and Drug Discovery
Andres M Bran
Philippe Schwaller
LM&MA
MedIm
AI4CE
38
14
0
09 Oct 2023
Molecular De Novo Design through Transformer-based Reinforcement
  Learning
Molecular De Novo Design through Transformer-based Reinforcement Learning
Pengcheng Xu
Tao Feng
Tianfan Fu
Siddhartha Laghuvarapu
Jimeng Sun
22
1
0
09 Oct 2023
Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
  Approach to Generating Molecules with Desirable Properties
Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel Approach to Generating Molecules with Desirable Properties
Siyuan Guo
Jihong Guan
Shuigeng Zhou
38
3
0
05 Oct 2023
Molecule Design by Latent Prompt Transformer
Molecule Design by Latent Prompt Transformer
Deqian Kong
Yuhao Huang
Jianwen Xie
Ying Nian Wu
17
3
0
05 Oct 2023
Searching for High-Value Molecules Using Reinforcement Learning and
  Transformers
Searching for High-Value Molecules Using Reinforcement Learning and Transformers
Raj Ghugare
Santiago Miret
Adriana Hugessen
Mariano Phielipp
Glen Berseth
11
16
0
04 Oct 2023
A Deep Instance Generative Framework for MILP Solvers Under Limited Data
  Availability
A Deep Instance Generative Framework for MILP Solvers Under Limited Data Availability
Zijie Geng
Xijun Li
Jie Wang
Xiao Li
Yongdong Zhang
Feng Wu
46
18
0
04 Oct 2023
SALSA: Semantically-Aware Latent Space Autoencoder
SALSA: Semantically-Aware Latent Space Autoencoder
Kathryn E. Kirchoff
Travis Maxfield
Alexander Tropsha
Shawn M. Gomez
18
2
0
04 Oct 2023
De Novo Drug Design with Joint Transformers
De Novo Drug Design with Joint Transformers
Adam Izdebski
Ewelina Węglarz-Tomczak
Ewa Szczurek
Jakub M. Tomczak
ViT
23
3
0
03 Oct 2023
MHG-GNN: Combination of Molecular Hypergraph Grammar with Graph Neural
  Network
MHG-GNN: Combination of Molecular Hypergraph Grammar with Graph Neural Network
Akihiro Kishimoto
Hiroshi Kajino
Masataka Hirose
Junta Fuchiwaki
Indra Priyadarsini
Lisa Hamada
Hajime Shinohara
D. Nakano
Seiji Takeda
AI4CE
34
4
0
28 Sep 2023
Language models in molecular discovery
Language models in molecular discovery
Chaoqi Wang
Yibo Jiang
Chenghao Yang
Han Liu
Yuxin Chen
25
7
0
28 Sep 2023
Understanding the Structure of QM7b and QM9 Quantum Mechanical Datasets
  Using Unsupervised Learning
Understanding the Structure of QM7b and QM9 Quantum Mechanical Datasets Using Unsupervised Learning
Julio J. Valdés
A. Tchagang
20
2
0
25 Sep 2023
Beam Enumeration: Probabilistic Explainability For Sample Efficient
  Self-conditioned Molecular Design
Beam Enumeration: Probabilistic Explainability For Sample Efficient Self-conditioned Molecular Design
Jeff Guo
P. Schwaller
32
6
0
25 Sep 2023
Previous
12345...151617
Next