ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02136
  4. Cited By
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks

A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks

7 October 2016
Dan Hendrycks
Kevin Gimpel
    UQCV
ArXivPDFHTML

Papers citing "A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks"

50 / 770 papers shown
Title
The Emerging Trends of Multi-Label Learning
The Emerging Trends of Multi-Label Learning
Weiwei Liu
Haobo Wang
Xiaobo Shen
Ivor W. Tsang
43
252
0
23 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
54
259
0
18 Nov 2020
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for
  Uncertainty Inference
DS-UI: Dual-Supervised Mixture of Gaussian Mixture Models for Uncertainty Inference
Jiyang Xie
Zhanyu Ma
Jing-Hao Xue
Guoqiang Zhang
Jun Guo
BDL
32
11
0
17 Nov 2020
Automatic segmentation with detection of local segmentation failures in
  cardiac MRI
Automatic segmentation with detection of local segmentation failures in cardiac MRI
Jörg Sander
B. D. de Vos
Ivana Išgum
25
50
0
13 Nov 2020
Testing for Typicality with Respect to an Ensemble of Learned
  Distributions
Testing for Typicality with Respect to an Ensemble of Learned Distributions
F. Laine
Claire Tomlin
13
0
0
11 Nov 2020
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD
  Detection On Medical Tabular Data
Trust Issues: Uncertainty Estimation Does Not Enable Reliable OOD Detection On Medical Tabular Data
Dennis Ulmer
L. Meijerink
Giovanni Cina
OOD
13
64
0
06 Nov 2020
Out-of-Distribution Detection for Automotive Perception
Out-of-Distribution Detection for Automotive Perception
Julia Nitsch
Masha Itkina
Ransalu Senanayake
Juan I. Nieto
M. Schmidt
Roland Siegwart
Mykel J. Kochenderfer
Cesar Cadena
UQCV
23
63
0
03 Nov 2020
Being Single Has Benefits. Instance Poisoning to Deceive Malware
  Classifiers
Being Single Has Benefits. Instance Poisoning to Deceive Malware Classifiers
T. Shapira
David Berend
Ishai Rosenberg
Yang Liu
A. Shabtai
Yuval Elovici
AAML
27
4
0
30 Oct 2020
Selective Classification Can Magnify Disparities Across Groups
Selective Classification Can Magnify Disparities Across Groups
Erik Jones
Shiori Sagawa
Pang Wei Koh
Ananya Kumar
Percy Liang
39
46
0
27 Oct 2020
Interpretation of NLP models through input marginalization
Interpretation of NLP models through input marginalization
Siwon Kim
Jihun Yi
Eunji Kim
Sungroh Yoon
MILM
FAtt
30
58
0
27 Oct 2020
Multiscale Score Matching for Out-of-Distribution Detection
Multiscale Score Matching for Out-of-Distribution Detection
Ahsan Mahmood
Junier Oliva
M. Styner
OODD
27
30
0
25 Oct 2020
Discriminative Nearest Neighbor Few-Shot Intent Detection by
  Transferring Natural Language Inference
Discriminative Nearest Neighbor Few-Shot Intent Detection by Transferring Natural Language Inference
Jianguo Zhang
Kazuma Hashimoto
Wenhao Liu
Chien-Sheng Wu
Yao Wan
Philip S. Yu
R. Socher
Caiming Xiong
16
92
0
25 Oct 2020
Uncertainty Aware Semi-Supervised Learning on Graph Data
Uncertainty Aware Semi-Supervised Learning on Graph Data
Xujiang Zhao
Feng Chen
Shu Hu
Jin-Hee Cho
UQCV
EDL
BDL
124
131
0
24 Oct 2020
PEP: Parameter Ensembling by Perturbation
PEP: Parameter Ensembling by Perturbation
Alireza Mehrtash
Purang Abolmaesumi
Polina Golland
Tina Kapur
Demian Wassermann
W. Wells
30
10
0
24 Oct 2020
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution
  Data
Calibrated Language Model Fine-Tuning for In- and Out-of-Distribution Data
Lingkai Kong
Haoming Jiang
Yuchen Zhuang
Jie Lyu
T. Zhao
Chao Zhang
OODD
32
26
0
22 Oct 2020
Confidence Estimation for Attention-based Sequence-to-sequence Models
  for Speech Recognition
Confidence Estimation for Attention-based Sequence-to-sequence Models for Speech Recognition
Qiujia Li
David Qiu
Yu Zhang
Yue Liu
Yanzhang He
P. Woodland
Liangliang Cao
Trevor Strohman
12
46
0
22 Oct 2020
Failure Prediction by Confidence Estimation of Uncertainty-Aware
  Dirichlet Networks
Failure Prediction by Confidence Estimation of Uncertainty-Aware Dirichlet Networks
Theodoros Tsiligkaridis
UQCV
22
7
0
19 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
681
0
19 Oct 2020
Anomaly Detection With Conditional Variational Autoencoders
Anomaly Detection With Conditional Variational Autoencoders
Adrian Alan Pol
Victor Berger
G. Cerminara
Cécile Germain
M. Pierini
CML
DRL
24
111
0
12 Oct 2020
Energy-based Out-of-distribution Detection
Energy-based Out-of-distribution Detection
Weitang Liu
Xiaoyun Wang
John Douglas Owens
Yixuan Li
OODD
119
1,306
0
08 Oct 2020
Deep Anomaly Detection by Residual Adaptation
Deep Anomaly Detection by Residual Adaptation
Lucas Deecke
Lukas Ruff
Robert A. Vandermeulen
Hakan Bilen
UQCV
33
4
0
05 Oct 2020
Generative Model-Enhanced Human Motion Prediction
Generative Model-Enhanced Human Motion Prediction
Anthony Bourached
Ryan-Rhys Griffiths
Robert J. Gray
A. Jha
P. Nachev
34
15
0
05 Oct 2020
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates
  for Object Detection
MetaDetect: Uncertainty Quantification and Prediction Quality Estimates for Object Detection
Marius Schubert
Karsten Kahl
Matthias Rottmann
UQCV
29
24
0
04 Oct 2020
Neural Bootstrapper
Neural Bootstrapper
Minsuk Shin
Hyungjoon Cho
Hyun-Seok Min
Sungbin Lim
UQCV
BDL
22
7
0
02 Oct 2020
GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing
GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing
Tao Yu
Chien-Sheng Wu
Xi Lin
Bailin Wang
Y. Tan
Xinyi Yang
Dragomir R. Radev
R. Socher
Caiming Xiong
LMTD
40
248
0
29 Sep 2020
Into the Unknown: Active Monitoring of Neural Networks
Into the Unknown: Active Monitoring of Neural Networks
Anna Lukina
Christian Schilling
T. Henzinger
AAML
32
27
0
14 Sep 2020
On Generating Plausible Counterfactual and Semi-Factual Explanations for
  Deep Learning
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin M. Kenny
Mark T. Keane
28
99
0
10 Sep 2020
TRIER: Template-Guided Neural Networks for Robust and Interpretable
  Sleep Stage Identification from EEG Recordings
TRIER: Template-Guided Neural Networks for Robust and Interpretable Sleep Stage Identification from EEG Recordings
Taeheon Lee
Jeonghwan Hwang
Honggu Lee
35
7
0
10 Sep 2020
Ramifications of Approximate Posterior Inference for Bayesian Deep
  Learning in Adversarial and Out-of-Distribution Settings
Ramifications of Approximate Posterior Inference for Bayesian Deep Learning in Adversarial and Out-of-Distribution Settings
John Mitros
A. Pakrashi
Brian Mac Namee
UQCV
26
2
0
03 Sep 2020
A Wholistic View of Continual Learning with Deep Neural Networks:
  Forgotten Lessons and the Bridge to Active and Open World Learning
A Wholistic View of Continual Learning with Deep Neural Networks: Forgotten Lessons and the Bridge to Active and Open World Learning
Martin Mundt
Yongjun Hong
Iuliia Pliushch
Visvanathan Ramesh
CLL
30
146
0
03 Sep 2020
On the Structures of Representation for the Robustness of Semantic
  Segmentation to Input Corruption
On the Structures of Representation for the Robustness of Semantic Segmentation to Input Corruption
Charles Lehman
Dogancan Temel
Ghassan AlRegib
23
4
0
02 Sep 2020
Open-set Adversarial Defense
Open-set Adversarial Defense
Rui Shao
Pramuditha Perera
Pong C. Yuen
Vishal M. Patel
AAML
28
30
0
02 Sep 2020
Anomaly Detection by Recombining Gated Unsupervised Experts
Anomaly Detection by Recombining Gated Unsupervised Experts
Jan-Philipp Schulze
Philip Sperl
Konstantin Böttinger
31
1
0
31 Aug 2020
Learning Adaptive Embedding Considering Incremental Class
Learning Adaptive Embedding Considering Incremental Class
Yang Yang
Zhensheng Sun
HengShu Zhu
Yanjie Fu
Hui Xiong
Jian Yang
CLL
24
40
0
31 Aug 2020
Aligning AI With Shared Human Values
Aligning AI With Shared Human Values
Dan Hendrycks
Collin Burns
Steven Basart
Andrew Critch
Jingkai Li
D. Song
Jacob Steinhardt
63
522
0
05 Aug 2020
Toward Reliable Models for Authenticating Multimedia Content: Detecting
  Resampling Artifacts With Bayesian Neural Networks
Toward Reliable Models for Authenticating Multimedia Content: Detecting Resampling Artifacts With Bayesian Neural Networks
Anatol Maier
Benedikt Lorch
Christian Riess
AAML
38
17
0
28 Jul 2020
An Uncertainty-aware Transfer Learning-based Framework for Covid-19
  Diagnosis
An Uncertainty-aware Transfer Learning-based Framework for Covid-19 Diagnosis
Afshar Shamsi
Hamzeh Asgharnezhad
Shirin Shamsi Jokandan
Abbas Khosravi
P. Kebria
D. Nahavandi
S. Nahavandi
D. Srinivasan
OOD
22
133
0
26 Jul 2020
On the Effectiveness of Image Rotation for Open Set Domain Adaptation
On the Effectiveness of Image Rotation for Open Set Domain Adaptation
S. Bucci
Mohammad Reza Loghmani
Tatiana Tommasi
63
142
0
24 Jul 2020
Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning
Multi-Task Curriculum Framework for Open-Set Semi-Supervised Learning
Qing Yu
Daiki Ikami
Go Irie
Kiyoharu Aizawa
23
128
0
22 Jul 2020
Unsupervised Domain Adaptation in the Absence of Source Data
Unsupervised Domain Adaptation in the Absence of Source Data
Roshni Sahoo
Divya Shanmugam
John Guttag
OOD
22
18
0
20 Jul 2020
CSI: Novelty Detection via Contrastive Learning on Distributionally
  Shifted Instances
CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
Jihoon Tack
Sangwoo Mo
Jongheon Jeong
Jinwoo Shin
OODD
11
589
0
16 Jul 2020
Detecting Out-of-distribution Samples via Variational Auto-encoder with
  Reliable Uncertainty Estimation
Detecting Out-of-distribution Samples via Variational Auto-encoder with Reliable Uncertainty Estimation
Xuming Ran
Mingkun Xu
Lingrui Mei
Qi Xu
Quanying Liu
OODD
UQCV
42
51
0
16 Jul 2020
Improving Face Recognition by Clustering Unlabeled Faces in the Wild
Improving Face Recognition by Clustering Unlabeled Faces in the Wild
Aruni RoyChowdhury
Xiang Yu
Kihyuk Sohn
Erik Learned-Miller
Manmohan Chandraker
CVBM
25
19
0
14 Jul 2020
Contrastive Training for Improved Out-of-Distribution Detection
Contrastive Training for Improved Out-of-Distribution Detection
Jim Winkens
Rudy Bunel
Abhijit Guha Roy
Robert Stanforth
Vivek Natarajan
...
Alan Karthikesalingam
Simon A. A. Kohl
taylan. cemgil
S. M. Ali Eslami
Olaf Ronneberger
OODD
19
236
0
10 Jul 2020
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference
  Methods for Deep Neural Networks
URSABench: Comprehensive Benchmarking of Approximate Bayesian Inference Methods for Deep Neural Networks
Meet P. Vadera
Adam D. Cobb
B. Jalaeian
Benjamin M. Marlin
BDL
UQCV
27
16
0
08 Jul 2020
A Critical Evaluation of Open-World Machine Learning
A Critical Evaluation of Open-World Machine Learning
Liwei Song
Vikash Sehwag
A. Bhagoji
Prateek Mittal
AAML
24
8
0
08 Jul 2020
A Benchmark of Medical Out of Distribution Detection
A Benchmark of Medical Out of Distribution Detection
Tianshi Cao
Chinwei Huang
D. Y. Hui
Joseph Paul Cohen
OOD
32
58
0
08 Jul 2020
Efficient Learning of Generative Models via Finite-Difference Score
  Matching
Efficient Learning of Generative Models via Finite-Difference Score Matching
Tianyu Pang
Kun Xu
Chongxuan Li
Yang Song
Stefano Ermon
Jun Zhu
DiffM
31
53
0
07 Jul 2020
Confidence-Aware Learning for Deep Neural Networks
Confidence-Aware Learning for Deep Neural Networks
J. Moon
Jihyo Kim
Younghak Shin
Sangheum Hwang
UQCV
28
144
0
03 Jul 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
30
627
0
01 Jul 2020
Previous
123...1213141516
Next