ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.02136
  4. Cited By
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks

A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks

7 October 2016
Dan Hendrycks
Kevin Gimpel
    UQCV
ArXivPDFHTML

Papers citing "A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks"

20 / 770 papers shown
Title
Out-of-Distribution Detection Using an Ensemble of Self Supervised
  Leave-out Classifiers
Out-of-Distribution Detection Using an Ensemble of Self Supervised Leave-out Classifiers
Apoorv Vyas
Nataraj Jammalamadaka
Xia Zhu
Dipankar Das
Bharat Kaul
Theodore L. Willke
OODD
27
247
0
04 Sep 2018
Controlling Over-generalization and its Effect on Adversarial Examples
  Generation and Detection
Controlling Over-generalization and its Effect on Adversarial Examples Generation and Detection
Mahdieh Abbasi
Arezoo Rajabi
A. Mozafari
R. Bobba
Christian Gagné
AAML
24
9
0
21 Aug 2018
Metric Learning for Novelty and Anomaly Detection
Metric Learning for Novelty and Anomaly Detection
Marc Masana
Idoia Ruiz
J. Serrat
Joost van de Weijer
Antonio M. López
OODD
33
80
0
16 Aug 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and
  Adversarial Attacks
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
23
2,008
0
10 Jul 2018
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Leveraging Uncertainty Estimates for Predicting Segmentation Quality
Terrance Devries
Graham W. Taylor
UQCV
36
114
0
02 Jul 2018
Robust Semantic Segmentation with Ladder-DenseNet Models
Robust Semantic Segmentation with Ladder-DenseNet Models
Ivan Kreso
Marin Orsic
Petra Bevandić
Sinisa Segvic
SSeg
25
12
0
09 Jun 2018
Generalizing to Unseen Domains via Adversarial Data Augmentation
Generalizing to Unseen Domains via Adversarial Data Augmentation
Riccardo Volpi
Hongseok Namkoong
Ozan Sener
John C. Duchi
Vittorio Murino
Silvio Savarese
OOD
41
768
0
30 May 2018
To Trust Or Not To Trust A Classifier
To Trust Or Not To Trust A Classifier
Heinrich Jiang
Been Kim
Melody Y. Guan
Maya R. Gupta
UQCV
30
464
0
30 May 2018
Deep Anomaly Detection Using Geometric Transformations
Deep Anomaly Detection Using Geometric Transformations
I. Golan
Ran El-Yaniv
42
601
0
28 May 2018
Classification Uncertainty of Deep Neural Networks Based on Gradient
  Information
Classification Uncertainty of Deep Neural Networks Based on Gradient Information
Philipp Oberdiek
Matthias Rottmann
Hanno Gottschalk
UQCV
31
64
0
22 May 2018
The Limits and Potentials of Deep Learning for Robotics
The Limits and Potentials of Deep Learning for Robotics
Niko Sünderhauf
Oliver Brock
Walter J. Scheirer
R. Hadsell
Dieter Fox
...
B. Upcroft
Pieter Abbeel
Wolfram Burgard
Michael Milford
Peter Corke
17
522
0
18 Apr 2018
Hierarchical Novelty Detection for Visual Object Recognition
Hierarchical Novelty Detection for Visual Object Recognition
Kibok Lee
Kimin Lee
Kyle Min
Y. Zhang
Jinwoo Shin
Honglak Lee
BDL
52
67
0
02 Apr 2018
Novelty Detection with GAN
Novelty Detection with GAN
M. Kliger
S. Fleishman
27
57
0
28 Feb 2018
Predictive Uncertainty Estimation via Prior Networks
Predictive Uncertainty Estimation via Prior Networks
A. Malinin
Mark Gales
UD
BDL
EDL
UQCV
PER
50
898
0
28 Feb 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe
  Noise
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
70
547
0
14 Feb 2018
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Terrance Devries
Graham W. Taylor
OOD
OODD
43
582
0
13 Feb 2018
Training Confidence-calibrated Classifiers for Detecting
  Out-of-Distribution Samples
Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution Samples
Kimin Lee
Honglak Lee
Kibok Lee
Jinwoo Shin
OODD
70
873
0
26 Nov 2017
Blocking Transferability of Adversarial Examples in Black-Box Learning
  Systems
Blocking Transferability of Adversarial Examples in Black-Box Learning Systems
Hossein Hosseini
Yize Chen
Sreeram Kannan
Baosen Zhang
Radha Poovendran
AAML
30
106
0
13 Mar 2017
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
278
5,695
0
05 Dec 2016
Early Methods for Detecting Adversarial Images
Early Methods for Detecting Adversarial Images
Dan Hendrycks
Kevin Gimpel
AAML
35
235
0
01 Aug 2016
Previous
123...141516