Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.01145
Cited By
Error bounds for approximations with deep ReLU networks
3 October 2016
Dmitry Yarotsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Error bounds for approximations with deep ReLU networks"
50 / 214 papers shown
Title
Hedonic Prices and Quality Adjusted Price Indices Powered by AI
Patrick Bajari
Zhihao Cen
Victor Chernozhukov
Manoj Manukonda
Suhas Vijaykumar
...
Ramon Huerta
Junbo Li
Ling Leng
George Monokroussos
Shan Wan
28
13
0
28 Apr 2023
Performative Prediction with Neural Networks
Mehrnaz Mofakhami
Ioannis Mitliagkas
Gauthier Gidel
40
16
0
14 Apr 2023
Deep neural network approximation of composite functions without the curse of dimensionality
Adrian Riekert
26
0
0
12 Apr 2023
Approximation of Nonlinear Functionals Using Deep ReLU Networks
Linhao Song
Jun Fan
Dirong Chen
Ding-Xuan Zhou
15
14
0
10 Apr 2023
GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward non-intrusive Meta-learning of parametric PDEs
Yanlai Chen
Shawn Koohy
PINN
AI4CE
37
24
0
27 Mar 2023
Deep Nonparametric Estimation of Intrinsic Data Structures by Chart Autoencoders: Generalization Error and Robustness
Hao Liu
Alex Havrilla
Rongjie Lai
Wenjing Liao
39
6
0
17 Mar 2023
One Neuron Saved Is One Neuron Earned: On Parametric Efficiency of Quadratic Networks
Fenglei Fan
Hangcheng Dong
Zhongming Wu
Lecheng Ruan
T. Zeng
Yiming Cui
Jing-Xiao Liao
59
8
0
11 Mar 2023
Error convergence and engineering-guided hyperparameter search of PINNs: towards optimized I-FENN performance
Panos Pantidis
Habiba Eldababy
Christopher Miguel Tagle
M. Mobasher
35
20
0
03 Mar 2023
Lower Bounds on the Depth of Integral ReLU Neural Networks via Lattice Polytopes
Christian Haase
Christoph Hertrich
Georg Loho
34
22
0
24 Feb 2023
Deep Neural Networks for Nonparametric Interaction Models with Diverging Dimension
Sohom Bhattacharya
Jianqing Fan
Debarghya Mukherjee
34
8
0
12 Feb 2023
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
28
6
0
03 Feb 2023
Optimal Approximation Complexity of High-Dimensional Functions with Neural Networks
Vincent P. H. Goverse
Jad Hamdan
Jared Tanner
13
0
0
30 Jan 2023
Getting Away with More Network Pruning: From Sparsity to Geometry and Linear Regions
Junyang Cai
Khai-Nguyen Nguyen
Nishant Shrestha
Aidan Good
Ruisen Tu
Xin Yu
Shandian Zhe
Thiago Serra
MLT
40
7
0
19 Jan 2023
Stretched and measured neural predictions of complex network dynamics
V. Vasiliauskaite
Nino Antulov-Fantulin
33
1
0
12 Jan 2023
Semiparametric Regression for Spatial Data via Deep Learning
Kexuan Li
Jun Zhu
A. Ives
V. Radeloff
Fangfang Wang
28
8
0
10 Jan 2023
Statistical guarantees for sparse deep learning
Johannes Lederer
19
11
0
11 Dec 2022
Limitations on approximation by deep and shallow neural networks
G. Petrova
P. Wojtaszczyk
19
7
0
30 Nov 2022
A Law of Data Separation in Deep Learning
Hangfeng He
Weijie J. Su
OOD
24
37
0
31 Oct 2022
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Luca Galimberti
Anastasis Kratsios
Giulia Livieri
OOD
28
14
0
24 Oct 2022
Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective
Tanya Marwah
Zachary Chase Lipton
Jianfeng Lu
Andrej Risteski
52
10
0
21 Oct 2022
Towards Global Neural Network Abstractions with Locally-Exact Reconstruction
Edoardo Manino
I. Bessa
Lucas C. Cordeiro
21
1
0
21 Oct 2022
Deep neural network expressivity for optimal stopping problems
Lukas Gonon
27
6
0
19 Oct 2022
Approximation analysis of CNNs from a feature extraction view
Jianfei Li
Han Feng
Ding-Xuan Zhou
24
3
0
14 Oct 2022
Analysis of the rate of convergence of an over-parametrized deep neural network estimate learned by gradient descent
Michael Kohler
A. Krzyżak
32
10
0
04 Oct 2022
Nonlinear Reconstruction for Operator Learning of PDEs with Discontinuities
S. Lanthaler
Roberto Molinaro
Patrik Hadorn
Siddhartha Mishra
56
24
0
03 Oct 2022
Limitations of neural network training due to numerical instability of backpropagation
Clemens Karner
V. Kazeev
P. Petersen
34
3
0
03 Oct 2022
Parameter-varying neural ordinary differential equations with partition-of-unity networks
Kookjin Lee
N. Trask
22
2
0
01 Oct 2022
Mega: Moving Average Equipped Gated Attention
Xuezhe Ma
Chunting Zhou
Xiang Kong
Junxian He
Liangke Gui
Graham Neubig
Jonathan May
Luke Zettlemoyer
33
183
0
21 Sep 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
54
6
0
17 Sep 2022
Seeking Interpretability and Explainability in Binary Activated Neural Networks
Benjamin Leblanc
Pascal Germain
FAtt
40
1
0
07 Sep 2022
Solving Elliptic Problems with Singular Sources using Singularity Splitting Deep Ritz Method
Tianhao Hu
Bangti Jin
Zhi Zhou
31
6
0
07 Sep 2022
On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent
Selina Drews
Michael Kohler
30
13
0
30 Aug 2022
Strategic Decision-Making in the Presence of Information Asymmetry: Provably Efficient RL with Algorithmic Instruments
Mengxin Yu
Zhuoran Yang
Jianqing Fan
OffRL
21
8
0
23 Aug 2022
Shallow neural network representation of polynomials
A. Beknazaryan
22
0
0
17 Aug 2022
Optimal Convergence Rates of Deep Neural Networks in a Classification Setting
Josephine T. Meyer
27
2
0
25 Jul 2022
Error analysis for deep neural network approximations of parametric hyperbolic conservation laws
Tim De Ryck
Siddhartha Mishra
PINN
15
10
0
15 Jul 2022
Size and depth of monotone neural networks: interpolation and approximation
Dan Mikulincer
Daniel Reichman
28
7
0
12 Jul 2022
Anisotropic, Sparse and Interpretable Physics-Informed Neural Networks for PDEs
A. A. Ramabathiran
P. Ramachandran
AI4CE
19
0
0
01 Jul 2022
Expressive power of binary and ternary neural networks
A. Beknazaryan
MQ
19
0
0
27 Jun 2022
Density Regression and Uncertainty Quantification with Bayesian Deep Noise Neural Networks
Daiwei Zhang
Tianci Liu
Jian Kang
BDL
UQCV
35
2
0
12 Jun 2022
A general approximation lower bound in
L
p
L^p
L
p
norm, with applications to feed-forward neural networks
E. M. Achour
Armand Foucault
Sébastien Gerchinovitz
Franccois Malgouyres
32
7
0
09 Jun 2022
Lower and Upper Bounds for Numbers of Linear Regions of Graph Convolutional Networks
Hao Chen
Yu Wang
Huan Xiong
GNN
16
6
0
01 Jun 2022
Uncertainty quantification of two-phase flow in porous media via coupled-TgNN surrogate model
Jun Yu Li
Dongxiao Zhang
Tianhao He
Q. Zheng
AI4CE
24
6
0
28 May 2022
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
Binghui Li
Jikai Jin
Han Zhong
J. Hopcroft
Liwei Wang
OOD
82
27
0
27 May 2022
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Nathan Kallus
M. Oprescu
CML
OOD
35
10
0
23 May 2022
Variable-Input Deep Operator Networks
Michael Prasthofer
Tim De Ryck
Siddhartha Mishra
48
23
0
23 May 2022
Deep Neural Network Classifier for Multi-dimensional Functional Data
Shuoyang Wang
Guanqun Cao
Zuofeng Shang
29
12
0
17 May 2022
On the inability of Gaussian process regression to optimally learn compositional functions
M. Giordano
Kolyan Ray
Johannes Schmidt-Hieber
42
12
0
16 May 2022
Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds
Michael O'Connell
Guanya Shi
Xichen Shi
Kamyar Azizzadenesheli
Anima Anandkumar
Yisong Yue
Soon-Jo Chung
75
169
0
13 May 2022
Convergence of Deep Neural Networks with General Activation Functions and Pooling
Wentao Huang
Yuesheng Xu
Haizhang Zhang
MLT
AI4CE
23
0
0
13 May 2022
Previous
1
2
3
4
5
Next