Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.01145
Cited By
Error bounds for approximations with deep ReLU networks
3 October 2016
Dmitry Yarotsky
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Error bounds for approximations with deep ReLU networks"
50 / 202 papers shown
Title
Bi-fidelity Modeling of Uncertain and Partially Unknown Systems using DeepONets
Subhayan De
Matthew J. Reynolds
M. Hassanaly
Ryan N. King
Alireza Doostan
AI4CE
26
37
0
03 Apr 2022
Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation
Josiah Park
Stephan Wojtowytsch
26
1
0
25 Mar 2022
How do noise tails impact on deep ReLU networks?
Jianqing Fan
Yihong Gu
Wen-Xin Zhou
ODL
38
13
0
20 Mar 2022
The Mathematics of Artificial Intelligence
Gitta Kutyniok
16
0
0
16 Mar 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
36
8
0
01 Mar 2022
Rates of convergence for nonparametric estimation of singular distributions using generative adversarial networks
Minwoo Chae
GAN
32
4
0
07 Feb 2022
Interplay between depth of neural networks and locality of target functions
Takashi Mori
Masakuni Ueda
25
0
0
28 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,180
0
14 Jan 2022
De Rham compatible Deep Neural Network FEM
M. Longo
J. Opschoor
Nico Disch
Christoph Schwab
Jakob Zech
22
8
0
14 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Approximation of functions with one-bit neural networks
C. S. Güntürk
Weilin Li
19
8
0
16 Dec 2021
ModelPred: A Framework for Predicting Trained Model from Training Data
Yingyan Zeng
Jiachen T. Wang
Si-An Chen
H. Just
Ran Jin
R. Jia
TDI
MU
33
2
0
24 Nov 2021
Deep Learning in High Dimension: Neural Network Approximation of Analytic Functions in
L
2
(
R
d
,
γ
d
)
L^2(\mathbb{R}^d,γ_d)
L
2
(
R
d
,
γ
d
)
Christoph Schwab
Jakob Zech
14
3
0
13 Nov 2021
DeepParticle: learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an interacting particle method
Zhongjian Wang
Jack Xin
Zhiwen Zhang
39
15
0
02 Nov 2021
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
S. Dubey
S. Singh
B. B. Chaudhuri
41
641
0
29 Sep 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
38
28
0
30 Aug 2021
Convergence rates of deep ReLU networks for multiclass classification
Thijs Bos
Johannes Schmidt-Hieber
19
22
0
02 Aug 2021
Neural Network Approximation of Refinable Functions
Ingrid Daubechies
Ronald A. DeVore
Nadav Dym
Shira Faigenbaum-Golovin
S. Kovalsky
Kung-Chin Lin
Josiah Park
G. Petrova
B. Sober
23
14
0
28 Jul 2021
Convergence of Deep ReLU Networks
Yuesheng Xu
Haizhang Zhang
37
26
0
27 Jul 2021
Robust Nonparametric Regression with Deep Neural Networks
Guohao Shen
Yuling Jiao
Yuanyuan Lin
Jian Huang
OOD
33
13
0
21 Jul 2021
Random Neural Networks in the Infinite Width Limit as Gaussian Processes
Boris Hanin
BDL
32
43
0
04 Jul 2021
Theory of Deep Convolutional Neural Networks III: Approximating Radial Functions
Tong Mao
Zhongjie Shi
Ding-Xuan Zhou
16
33
0
02 Jul 2021
Layer Folding: Neural Network Depth Reduction using Activation Linearization
Amir Ben Dror
Niv Zehngut
Avraham Raviv
E. Artyomov
Ran Vitek
R. Jevnisek
29
20
0
17 Jun 2021
On the Representation of Solutions to Elliptic PDEs in Barron Spaces
Ziang Chen
Jianfeng Lu
Yulong Lu
38
26
0
14 Jun 2021
ReLU Deep Neural Networks from the Hierarchical Basis Perspective
Juncai He
Lin Li
Jinchao Xu
AI4CE
28
30
0
10 May 2021
On the approximation of functions by tanh neural networks
Tim De Ryck
S. Lanthaler
Siddhartha Mishra
21
137
0
18 Apr 2021
Sharp bounds for the number of regions of maxout networks and vertices of Minkowski sums
Guido Montúfar
Yue Ren
Leon Zhang
13
39
0
16 Apr 2021
Function approximation by deep neural networks with parameters
{
0
,
±
1
2
,
±
1
,
2
}
\{0,\pm \frac{1}{2}, \pm 1, 2\}
{
0
,
±
2
1
,
±
1
,
2
}
A. Beknazaryan
15
5
0
15 Mar 2021
A Deep Learning approach to Reduced Order Modelling of Parameter Dependent Partial Differential Equations
N. R. Franco
Andrea Manzoni
P. Zunino
26
45
0
10 Mar 2021
Parametric Complexity Bounds for Approximating PDEs with Neural Networks
Tanya Marwah
Zachary Chase Lipton
Andrej Risteski
28
19
0
03 Mar 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
101
115
0
28 Feb 2021
Quantitative approximation results for complex-valued neural networks
A. Caragea
D. Lee
J. Maly
G. Pfander
F. Voigtlaender
13
5
0
25 Feb 2021
Size and Depth Separation in Approximating Benign Functions with Neural Networks
Gal Vardi
Daniel Reichman
T. Pitassi
Ohad Shamir
26
7
0
30 Jan 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
130
165
0
29 Jan 2021
Partition of unity networks: deep hp-approximation
Kookjin Lee
N. Trask
Ravi G. Patel
Mamikon A. Gulian
E. Cyr
22
30
0
27 Jan 2021
Reproducing Activation Function for Deep Learning
Senwei Liang
Liyao Lyu
Chunmei Wang
Haizhao Yang
36
21
0
13 Jan 2021
A Priori Generalization Analysis of the Deep Ritz Method for Solving High Dimensional Elliptic Equations
Jianfeng Lu
Yulong Lu
Min Wang
36
37
0
05 Jan 2021
Machine Learning Advances for Time Series Forecasting
Ricardo P. Masini
M. C. Medeiros
Eduardo F. Mendes
AI4TS
21
270
0
23 Dec 2020
Deep Neural Networks Are Effective At Learning High-Dimensional Hilbert-Valued Functions From Limited Data
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
36
29
0
11 Dec 2020
Estimation of the Mean Function of Functional Data via Deep Neural Networks
Shuoyang Wang
Guanqun Cao
Zuofeng Shang
30
20
0
08 Dec 2020
The universal approximation theorem for complex-valued neural networks
F. Voigtlaender
27
62
0
06 Dec 2020
Learning Barrier Functions with Memory for Robust Safe Navigation
Kehan Long
Cheng Qian
Jorge Cortés
Nikolay Atanasov
25
52
0
03 Nov 2020
Neural Network Approximation: Three Hidden Layers Are Enough
Zuowei Shen
Haizhao Yang
Shijun Zhang
30
115
0
25 Oct 2020
On the Number of Linear Functions Composing Deep Neural Network: Towards a Refined Definition of Neural Networks Complexity
Yuuki Takai
Akiyoshi Sannai
Matthieu Cordonnier
71
4
0
23 Oct 2020
Deep Equals Shallow for ReLU Networks in Kernel Regimes
A. Bietti
Francis R. Bach
28
86
0
30 Sep 2020
Causal Inference of General Treatment Effects using Neural Networks with A Diverging Number of Confounders
Xiaohong Chen
Yong Liu
Shujie Ma
Zheng-Zhong Zhang
CML
22
11
0
15 Sep 2020
Universal Approximation Property of Quantum Machine Learning Models in Quantum-Enhanced Feature Spaces
Takahiro Goto
Quoc Hoan Tran
Kohei Nakajima
25
64
0
01 Sep 2020
Approximation of Smoothness Classes by Deep Rectifier Networks
Mazen Ali
A. Nouy
11
9
0
30 Jul 2020
Depth separation for reduced deep networks in nonlinear model reduction: Distilling shock waves in nonlinear hyperbolic problems
Donsub Rim
Luca Venturi
Joan Bruna
Benjamin Peherstorfer
28
9
0
28 Jul 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
56
23
0
22 Jul 2020
Previous
1
2
3
4
5
Next