Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.00168
Cited By
v1
v2
v3
v4
v5 (latest)
Learning Optimized Risk Scores
1 October 2016
Berk Ustun
Cynthia Rudin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning Optimized Risk Scores"
49 / 49 papers shown
Title
Fast and Interpretable Mortality Risk Scores for Critical Care Patients
Chloe Qinyu Zhu
Muhang Tian
Lesia Semenova
Jiachang Liu
Jack Xu
Joseph Scarpa
Cynthia Rudin
92
4
0
21 Nov 2023
Fairness in Contextual Resource Allocation Systems: Metrics and Incompatibility Results
Nathanael Jo
Bill Tang
Kathryn Dullerud
S. Aghaei
Eric Rice
P. Vayanos
65
8
0
04 Dec 2022
TimberTrek: Exploring and Curating Sparse Decision Trees with Interactive Visualization
Zijie J. Wang
Chudi Zhong
Rui Xin
Takuya Takagi
Zhi Chen
Duen Horng Chau
Cynthia Rudin
Margo Seltzer
68
16
0
19 Sep 2022
When Personalization Harms: Reconsidering the Use of Group Attributes in Prediction
Vinith Suriyakumar
Marzyeh Ghassemi
Berk Ustun
111
9
0
04 Jun 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
94
12
0
13 May 2022
Shapley variable importance clouds for interpretable machine learning
Yilin Ning
M. Ong
Bibhas Chakraborty
B. Goldstein
Daniel Ting
Roger Vaughan
Nan Liu
FAtt
72
74
0
06 Oct 2021
Deep learning for temporal data representation in electronic health records: A systematic review of challenges and methodologies
F. Xie
Han Yuan
Yilin Ning
M. Ong
Mengling Feng
Wynne Hsu
B. Chakraborty
Nan Liu
99
90
0
21 Jul 2021
A Holistic Approach to Interpretability in Financial Lending: Models, Visualizations, and Summary-Explanations
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
76
41
0
04 Jun 2021
Ethical Implementation of Artificial Intelligence to Select Embryos in In Vitro Fertilization
M. Afnan
Cynthia Rudin
Vincent Conitzer
J. Savulescu
Abhishek Mishra
Yanhe Liu
M. Afnan
SyDa
51
17
0
30 Apr 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
258
678
0
20 Mar 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
79
23
0
14 Feb 2021
Deep Cox Mixtures for Survival Regression
Chirag Nagpal
Steve Yadlowsky
Negar Rostamzadeh
Katherine A. Heller
CML
170
62
0
16 Jan 2021
When Does Uncertainty Matter?: Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making
S. McGrath
Parth Mehta
Alexandra Zytek
Isaac Lage
Himabindu Lakkaraju
UD
70
26
0
12 Nov 2020
Explainable Machine Learning for Public Policy: Use Cases, Gaps, and Research Directions
Kasun Amarasinghe
Kit Rodolfa
Hemank Lamba
Rayid Ghani
ELM
XAI
191
53
0
27 Oct 2020
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
105
88
0
08 May 2020
MonoNet: Towards Interpretable Models by Learning Monotonic Features
An-phi Nguyen
María Rodríguez Martínez
FAtt
60
13
0
30 Sep 2019
Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data
Dylan Slack
Sorelle A. Friedler
Emile Givental
FaML
118
55
0
24 Aug 2019
Optimal Sparse Decision Trees
Xiyang Hu
Cynthia Rudin
Margo Seltzer
143
175
0
29 Apr 2019
Repairing without Retraining: Avoiding Disparate Impact with Counterfactual Distributions
Hao Wang
Berk Ustun
Flavio du Pin Calmon
FaML
123
85
0
29 Jan 2019
Rank-one Convexification for Sparse Regression
Alper Atamtürk
A. Gómez
220
50
0
29 Jan 2019
Interpretable Optimal Stopping
D. Ciocan
V. Mišić
71
44
0
18 Dec 2018
An Interpretable Model with Globally Consistent Explanations for Credit Risk
Chaofan Chen
Kangcheng Lin
Cynthia Rudin
Yaron Shaposhnik
Sijia Wang
Tong Wang
FAtt
87
94
0
30 Nov 2018
This Looks Like That: Deep Learning for Interpretable Image Recognition
Chaofan Chen
Oscar Li
Chaofan Tao
A. Barnett
Jonathan Su
Cynthia Rudin
338
1,193
0
27 Jun 2018
Direct Learning to Rank and Rerank
Cynthia Rudin
Yining Wang
51
10
0
21 Feb 2018
Learning Credible Models
Jiaxuan Wang
Jeeheh Oh
Haozhu Wang
Jenna Wiens
FaML
94
30
0
08 Nov 2017
Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions
Oscar Li
Hao Liu
Chaofan Chen
Cynthia Rudin
213
594
0
13 Oct 2017
An Optimization Approach to Learning Falling Rule Lists
Chaofan Chen
Cynthia Rudin
86
39
0
06 Oct 2017
On Fairness and Calibration
Geoff Pleiss
Manish Raghavan
Felix Wu
Jon M. Kleinberg
Kilian Q. Weinberger
FaML
232
886
0
06 Sep 2017
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
137
195
0
06 Apr 2017
Simple rules for complex decisions
Jongbin Jung
Connor Concannon
Ravi Shroff
Sharad Goel
D. Goldstein
CML
85
105
0
15 Feb 2017
European Union regulations on algorithmic decision-making and a "right to explanation"
B. Goodman
Seth Flaxman
FaML
AILaw
85
1,908
0
28 Jun 2016
Satisfying Real-world Goals with Dataset Constraints
Gabriel Goh
Andrew Cotter
Maya R. Gupta
M. Friedlander
OffRL
88
215
0
24 Jun 2016
Concrete Problems in AI Safety
Dario Amodei
C. Olah
Jacob Steinhardt
Paul Christiano
John Schulman
Dandelion Mané
327
2,407
0
21 Jun 2016
Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model
Benjamin Letham
Cynthia Rudin
Tyler H. McCormick
D. Madigan
FAtt
117
748
0
05 Nov 2015
Piecewise-Linear Approximation for Feature Subset Selection in a Sequential Logit Model
Toshiki Sato
Yuichi Takano
Ryuhei Miyashiro
46
27
0
19 Oct 2015
Fairness Constraints: Mechanisms for Fair Classification
Muhammad Bilal Zafar
Isabel Valera
Manuel Gomez Rodriguez
Krishna P. Gummadi
FaML
214
49
0
19 Jul 2015
Best Subset Selection via a Modern Optimization Lens
Dimitris Bertsimas
Angela King
Rahul Mazumder
469
666
0
11 Jul 2015
Monotonic Calibrated Interpolated Look-Up Tables
Maya R. Gupta
Andrew Cotter
Jan Pfeifer
Konstantin Voevodski
K. Canini
Alexander Mangylov
Wojtek Moczydlowski
A. V. Esbroeck
230
129
0
23 May 2015
Interpretable Classification Models for Recidivism Prediction
J. Zeng
Berk Ustun
Cynthia Rudin
FaML
145
247
0
26 Mar 2015
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
Berk Ustun
Cynthia Rudin
147
354
0
15 Feb 2015
Certifying and removing disparate impact
Michael Feldman
Sorelle A. Friedler
John Moeller
C. Scheidegger
Suresh Venkatasubramanian
FaML
268
2,001
0
11 Dec 2014
Falling Rule Lists
Fulton Wang
Cynthia Rudin
77
258
0
21 Nov 2014
Box Drawings for Learning with Imbalanced Data
Siong Thye Goh
Cynthia Rudin
97
43
0
13 Mar 2014
Binary Classifier Calibration: Non-parametric approach
Mahdi Pakdaman Naeini
G. Cooper
Milos Hauskrecht
123
17
0
14 Jan 2014
Binary Classifier Calibration: Bayesian Non-Parametric Approach
Mahdi Pakdaman Naeini
G. Cooper
Milos Hauskrecht
64
2
0
13 Jan 2014
Concentration inequalities for sampling without replacement
Rémi Bardenet
Odalric-Ambrym Maillard
131
167
0
16 Sep 2013
Supersparse Linear Integer Models for Predictive Scoring Systems
Berk Ustun
Stefano Tracà
Cynthia Rudin
79
20
0
25 Jun 2013
Predicting accurate probabilities with a ranking loss
A. Menon
Xiaoqian Jiang
Shankar Vembu
Charles Elkan
L. Ohno-Machado
120
72
0
18 Jun 2012
Composite Binary Losses
Mark D. Reid
Robert C. Williamson
170
223
0
17 Dec 2009
1