Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1609.03683
Cited By
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
13 September 2016
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Lizhen Qu
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach"
15 / 265 papers shown
Title
Learning From Noisy Labels By Regularized Estimation Of Annotator Confusion
Ryutaro Tanno
A. Saeedi
S. Sankaranarayanan
Daniel C. Alexander
N. Silberman
NoLa
27
228
0
10 Feb 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
19
717
0
28 Jan 2019
Robust Learning at Noisy Labeled Medical Images: Applied to Skin Lesion Classification
Cheng Xue
Qi Dou
Xueying Shi
Hao Chen
Pheng Ann Heng
NoLa
13
104
0
23 Jan 2019
Limited Gradient Descent: Learning With Noisy Labels
Yi Sun
Yan Tian
Yiping Xu
Jianxiang Li
NoLa
35
13
0
20 Nov 2018
An Entropic Optimal Transport Loss for Learning Deep Neural Networks under Label Noise in Remote Sensing Images
B. Damodaran
Rémi Flamary
Vivien Seguy
Nicolas Courty
NoLa
26
39
0
02 Oct 2018
On the Minimal Supervision for Training Any Binary Classifier from Only Unlabeled Data
Nan Lu
Gang Niu
A. Menon
Masashi Sugiyama
MQ
30
85
0
31 Aug 2018
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images
Sheng Guo
Weilin Huang
Haozhi Zhang
Chenfan Zhuang
Dengke Dong
Matthew R. Scott
Dinglong Huang
SSL
20
338
0
03 Aug 2018
Dimensionality-Driven Learning with Noisy Labels
Xingjun Ma
Yisen Wang
Michael E. Houle
Shuo Zhou
S. Erfani
Shutao Xia
S. Wijewickrema
James Bailey
NoLa
29
425
0
07 Jun 2018
Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels
Bo Han
Quanming Yao
Xingrui Yu
Gang Niu
Miao Xu
Weihua Hu
Ivor Tsang
Masashi Sugiyama
NoLa
58
2,027
0
18 Apr 2018
Joint Optimization Framework for Learning with Noisy Labels
Daiki Tanaka
Daiki Ikami
T. Yamasaki
Kiyoharu Aizawa
NoLa
39
702
0
30 Mar 2018
Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise
Dan Hendrycks
Mantas Mazeika
Duncan Wilson
Kevin Gimpel
NoLa
27
546
0
14 Feb 2018
Learning with Biased Complementary Labels
Xiyu Yu
Tongliang Liu
Biwei Huang
Dacheng Tao
26
192
0
27 Nov 2017
Transfer Learning with Label Noise
Xiyu Yu
Tongliang Liu
Biwei Huang
Kun Zhang
Kayhan Batmanghelich
Dacheng Tao
NoLa
16
32
0
31 Jul 2017
Temporal Ensembling for Semi-Supervised Learning
S. Laine
Timo Aila
UQCV
18
2,522
0
07 Oct 2016
Learning from Binary Labels with Instance-Dependent Corruption
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
NoLa
31
41
0
03 May 2016
Previous
1
2
3
4
5
6