Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1609.03683
Cited By
Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach
13 September 2016
Giorgio Patrini
A. Rozza
A. Menon
Richard Nock
Lizhen Qu
NoLa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Making Deep Neural Networks Robust to Label Noise: a Loss Correction Approach"
50 / 265 papers shown
Title
Continual Learning on Noisy Data Streams via Self-Purified Replay
C. Kim
Jinseo Jeong
Sang-chul Moon
Gunhee Kim
CLL
40
39
0
14 Oct 2021
Detecting Corrupted Labels Without Training a Model to Predict
Zhaowei Zhu
Zihao Dong
Yang Liu
NoLa
149
62
0
12 Oct 2021
Robustness and Reliability When Training With Noisy Labels
Amanda Olmin
Fredrik Lindsten
OOD
NoLa
18
14
0
07 Oct 2021
ARCA23K: An audio dataset for investigating open-set label noise
Turab Iqbal
Yin Cao
A. Bailey
Mark D. Plumbley
Wenwu Wang
26
4
0
19 Sep 2021
Co-Correcting: Noise-tolerant Medical Image Classification via mutual Label Correction
Jiarun Liu
Ruirui Li
Chuan Sun
OOD
NoLa
VLM
24
32
0
11 Sep 2021
Assessing the Quality of the Datasets by Identifying Mislabeled Samples
Vaibhav Pulastya
Gaurav Nuti
Yash Kumar Atri
Tanmoy Chakraborty
NoLa
27
5
0
10 Sep 2021
MetaXT: Meta Cross-Task Transfer between Disparate Label Spaces
Srinagesh Sharma
Guoqing Zheng
Ahmed Hassan Awadallah
27
1
0
09 Sep 2021
A robust approach for deep neural networks in presence of label noise: relabelling and filtering instances during training
A. Gómez-Ríos
Julián Luengo
Francisco Herrera
OOD
NoLa
21
0
0
08 Sep 2021
Ghost Loss to Question the Reliability of Training Data
A. Deliège
A. Cioppa
Marc Van Droogenbroeck
UQCV
21
1
0
03 Sep 2021
WALNUT: A Benchmark on Semi-weakly Supervised Learning for Natural Language Understanding
Guoqing Zheng
Giannis Karamanolakis
Kai Shu
Ahmed Hassan Awadallah
SSL
21
1
0
28 Aug 2021
NGC: A Unified Framework for Learning with Open-World Noisy Data
Zhi-Fan Wu
Tong Wei
Jianwen Jiang
Chaojie Mao
Mingqian Tang
Yu-Feng Li
11
80
0
25 Aug 2021
Cooperative Learning for Noisy Supervision
Hao Wu
Jiangchao Yao
Ya-Qin Zhang
Yanfeng Wang
NoLa
14
2
0
11 Aug 2021
Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach
Zeren Sun
Yazhou Yao
Xiu-Shen Wei
Yongshun Zhang
Fumin Shen
Jianxin Wu
Jian Zhang
Heng Tao Shen
28
55
0
05 Aug 2021
Co-learning: Learning from Noisy Labels with Self-supervision
Cheng Tan
Jun-Xiong Xia
Lirong Wu
Stan Z. Li
NoLa
76
116
0
05 Aug 2021
Memorization in Deep Neural Networks: Does the Loss Function matter?
Deep Patel
P. Sastry
TDI
27
8
0
21 Jul 2021
kNet: A Deep kNN Network To Handle Label Noise
Itzik Mizrahi
S. Avidan
NoLa
21
0
0
20 Jul 2021
Consensual Collaborative Training And Knowledge Distillation Based Facial Expression Recognition Under Noisy Annotations
Darshan Gera
B. S
13
7
0
10 Jul 2021
Mitigating Memorization in Sample Selection for Learning with Noisy Labels
Kyeongbo Kong
Junggi Lee
Youngchul Kwak
Young-Rae Cho
Seong-Eun Kim
Woo‐Jin Song
NoLa
18
0
0
08 Jul 2021
Label noise in segmentation networks : mitigation must deal with bias
Eugene Vorontsov
Samuel Kadoury
NoLa
31
19
0
05 Jul 2021
Adaptive Sample Selection for Robust Learning under Label Noise
Deep Patel
P. Sastry
OOD
NoLa
28
29
0
29 Jun 2021
Distilling effective supervision for robust medical image segmentation with noisy labels
Jialin Shi
Ji Wu
NoLa
19
32
0
21 Jun 2021
Being Properly Improper
Tyler Sypherd
Richard Nock
Lalitha Sankar
FaML
39
10
0
18 Jun 2021
Towards Understanding Deep Learning from Noisy Labels with Small-Loss Criterion
Xian-Jin Gui
Wei Wang
Zhang-Hao Tian
NoLa
30
44
0
17 Jun 2021
NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely and Noisily Labeled Graphs
Enyan Dai
Charu C. Aggarwal
Suhang Wang
NoLa
27
114
0
08 Jun 2021
To Smooth or Not? When Label Smoothing Meets Noisy Labels
Jiaheng Wei
Hangyu Liu
Tongliang Liu
Gang Niu
Masashi Sugiyama
Yang Liu
NoLa
32
69
0
08 Jun 2021
CCMN: A General Framework for Learning with Class-Conditional Multi-Label Noise
Ming-Kun Xie
Sheng-Jun Huang
NoLa
24
25
0
16 May 2021
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels
Erik Englesson
Hossein Azizpour
NoLa
34
103
0
10 May 2021
Self-paced Resistance Learning against Overfitting on Noisy Labels
Xiaoshuang Shi
Zhenhua Guo
Fuyong Xing
Yun Liang
Xiaofeng Zhu
NoLa
21
20
0
07 May 2021
Schematic Memory Persistence and Transience for Efficient and Robust Continual Learning
Yuyang Gao
Giorgio Ascoli
Liang Zhao
19
4
0
05 May 2021
Boosting Co-teaching with Compression Regularization for Label Noise
Yingyi Chen
Xin Shen
S. Hu
Johan A. K. Suykens
NoLa
45
45
0
28 Apr 2021
Contrastive Learning Improves Model Robustness Under Label Noise
Aritra Ghosh
Andrew S. Lan
NoLa
21
58
0
19 Apr 2021
Self-Training with Weak Supervision
Giannis Karamanolakis
Subhabrata Mukherjee
Guoqing Zheng
Ahmed Hassan Awadallah
NoLa
16
86
0
12 Apr 2021
Learning from Noisy Labels via Dynamic Loss Thresholding
Hao Yang
Youzhi Jin
Zi-Hua Li
Deng-Bao Wang
Lei Miao
Xin Geng
Min-Ling Zhang
NoLa
AI4CE
32
6
0
01 Apr 2021
Collaborative Label Correction via Entropy Thresholding
Hao Wu
Jiangchao Yao
Jiajie Wang
Yinru Chen
Ya-Qin Zhang
Yanfeng Wang
NoLa
22
4
0
31 Mar 2021
Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for Source-Free Unsupervised Domain Adaptation
Waqar Ahmed
Pietro Morerio
Vittorio Murino
16
4
0
29 Mar 2021
From Synthetic to Real: Unsupervised Domain Adaptation for Animal Pose Estimation
Chen Li
G. Lee
OOD
11
81
0
27 Mar 2021
Jo-SRC: A Contrastive Approach for Combating Noisy Labels
Yazhou Yao
Zeren Sun
Chuanyi Zhang
Fumin Shen
Qi Wu
Jian Zhang
Zhenmin Tang
NoLa
33
133
0
24 Mar 2021
On the Robustness of Monte Carlo Dropout Trained with Noisy Labels
Purvi Goel
Li Chen
NoLa
33
15
0
22 Mar 2021
Supervised Learning in the Presence of Noise: Application in ICD-10 Code Classification
Youngwoo Kim
Cheng Li
Bingyang Ye
A. Tahmasebi
J. Aslam
NoLa
19
1
0
13 Mar 2021
LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment
F. Cordeiro
Ragav Sachdeva
Vasileios Belagiannis
Ian Reid
G. Carneiro
NoLa
13
77
0
06 Mar 2021
Unified Robust Training for Graph NeuralNetworks against Label Noise
Yayong Li
Jie Yin
Ling-Hao Chen
NoLa
26
29
0
05 Mar 2021
DST: Data Selection and joint Training for Learning with Noisy Labels
Yi Wei
Xue Mei
Xin Liu
Pengxiang Xu
NoLa
27
3
0
01 Mar 2021
Technical Report -- Expected Exploitability: Predicting the Development of Functional Vulnerability Exploits
Octavian Suciu
Connor Nelson
Zhuo Lyu
Tiffany Bao
Tudor Dumitras
6
36
0
15 Feb 2021
Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels
Zhaowei Zhu
Yiwen Song
Yang Liu
NoLa
13
91
0
10 Feb 2021
Understanding the Interaction of Adversarial Training with Noisy Labels
Jianing Zhu
Jingfeng Zhang
Bo Han
Tongliang Liu
Gang Niu
Hongxia Yang
Mohan S. Kankanhalli
Masashi Sugiyama
AAML
27
27
0
06 Feb 2021
Analysing the Noise Model Error for Realistic Noisy Label Data
Michael A. Hedderich
D. Zhu
Dietrich Klakow
NoLa
29
19
0
24 Jan 2021
Dual-Refinement: Joint Label and Feature Refinement for Unsupervised Domain Adaptive Person Re-Identification
Yongxing Dai
Jun Liu
Yan Bai
Zekun Tong
Ling-yu Duan
26
77
0
26 Dec 2020
Multi-Label Noise Robust Collaborative Learning for Remote Sensing Image Classification
A. Aksoy
Mahdyar Ravanbakhsh
Begüm Demir
29
24
0
19 Dec 2020
From Weakly Supervised Learning to Biquality Learning: an Introduction
Pierre Nodet
V. Lemaire
A. Bondu
Antoine Cornuéjols
A. Ouorou
14
21
0
16 Dec 2020
Attentional-Biased Stochastic Gradient Descent
Q. Qi
Yi Tian Xu
R. L. Jin
W. Yin
Tianbao Yang
ODL
26
12
0
13 Dec 2020
Previous
1
2
3
4
5
6
Next