ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.00751
31
41

Learning from Binary Labels with Instance-Dependent Corruption

3 May 2016
A. Menon
Brendan van Rooyen
Nagarajan Natarajan
    NoLa
ArXivPDFHTML
Abstract

Suppose we have a sample of instances paired with binary labels corrupted by arbitrary instance- and label-dependent noise. With sufficiently many such samples, can we optimally classify and rank instances with respect to the noise-free distribution? We provide a theoretical analysis of this question, with three main contributions. First, we prove that for instance-dependent noise, any algorithm that is consistent for classification on the noisy distribution is also consistent on the clean distribution. Second, we prove that for a broad class of instance- and label-dependent noise, a similar consistency result holds for the area under the ROC curve. Third, for the latter noise model, when the noise-free class-probability function belongs to the generalised linear model family, we show that the Isotron can efficiently and provably learn from the corrupted sample.

View on arXiv
Comments on this paper