ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04636
  4. Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

16 August 2016
Hamed Karimi
J. Nutini
Mark W. Schmidt
ArXivPDFHTML

Papers citing "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"

50 / 167 papers shown
Title
Exact Pareto Optimal Search for Multi-Task Learning and Multi-Criteria
  Decision-Making
Exact Pareto Optimal Search for Multi-Task Learning and Multi-Criteria Decision-Making
Debabrata Mahapatra
Vaibhav Rajan
25
2
0
02 Aug 2021
Improved Learning Rates for Stochastic Optimization: Two Theoretical
  Viewpoints
Improved Learning Rates for Stochastic Optimization: Two Theoretical Viewpoints
Shaojie Li
Yong Liu
12
13
0
19 Jul 2021
Faithful Edge Federated Learning: Scalability and Privacy
Faithful Edge Federated Learning: Scalability and Privacy
Meng Zhang
Ermin Wei
R. Berry
FedML
13
44
0
30 Jun 2021
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks
  Trained by Gradient Descent
Proxy Convexity: A Unified Framework for the Analysis of Neural Networks Trained by Gradient Descent
Spencer Frei
Quanquan Gu
15
25
0
25 Jun 2021
Who Leads and Who Follows in Strategic Classification?
Who Leads and Who Follows in Strategic Classification?
Tijana Zrnic
Eric Mazumdar
S. Shankar Sastry
Michael I. Jordan
18
50
0
23 Jun 2021
SG-PALM: a Fast Physically Interpretable Tensor Graphical Model
SG-PALM: a Fast Physically Interpretable Tensor Graphical Model
Yu Wang
Alfred Hero
34
4
0
26 May 2021
Stochastic gradient descent with noise of machine learning type. Part I:
  Discrete time analysis
Stochastic gradient descent with noise of machine learning type. Part I: Discrete time analysis
Stephan Wojtowytsch
21
50
0
04 May 2021
Convergence Analysis and System Design for Federated Learning over
  Wireless Networks
Convergence Analysis and System Design for Federated Learning over Wireless Networks
Shuo Wan
Jiaxun Lu
Pingyi Fan
Yunfeng Shao
Chenghui Peng
Khaled B. Letaief
34
54
0
30 Apr 2021
Decentralized Federated Averaging
Decentralized Federated Averaging
Tao Sun
Dongsheng Li
Bao Wang
FedML
38
206
0
23 Apr 2021
Local Stochastic Gradient Descent Ascent: Convergence Analysis and
  Communication Efficiency
Local Stochastic Gradient Descent Ascent: Convergence Analysis and Communication Efficiency
Yuyang Deng
M. Mahdavi
19
58
0
25 Feb 2021
Provable Super-Convergence with a Large Cyclical Learning Rate
Provable Super-Convergence with a Large Cyclical Learning Rate
Samet Oymak
28
12
0
22 Feb 2021
Convergence of stochastic gradient descent schemes for
  Lojasiewicz-landscapes
Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes
Steffen Dereich
Sebastian Kassing
26
27
0
16 Feb 2021
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
13
7
0
12 Feb 2021
AEGD: Adaptive Gradient Descent with Energy
AEGD: Adaptive Gradient Descent with Energy
Hailiang Liu
Xuping Tian
ODL
25
11
0
10 Oct 2020
On Communication Compression for Distributed Optimization on
  Heterogeneous Data
On Communication Compression for Distributed Optimization on Heterogeneous Data
Sebastian U. Stich
45
22
0
04 Sep 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
19
0
0
26 Aug 2020
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
AdaScale SGD: A User-Friendly Algorithm for Distributed Training
Tyler B. Johnson
Pulkit Agrawal
Haijie Gu
Carlos Guestrin
ODL
19
37
0
09 Jul 2020
Stochastic Hamiltonian Gradient Methods for Smooth Games
Stochastic Hamiltonian Gradient Methods for Smooth Games
Nicolas Loizou
Hugo Berard
Alexia Jolicoeur-Martineau
Pascal Vincent
Simon Lacoste-Julien
Ioannis Mitliagkas
25
50
0
08 Jul 2020
DeltaGrad: Rapid retraining of machine learning models
DeltaGrad: Rapid retraining of machine learning models
Yinjun Wu
Edgar Dobriban
S. Davidson
MU
11
194
0
26 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and
  Interpolation
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
A. Gretton
13
76
0
17 Jun 2020
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Linear Last-iterate Convergence in Constrained Saddle-point Optimization
Chen-Yu Wei
Chung-Wei Lee
Mengxiao Zhang
Haipeng Luo
8
11
0
16 Jun 2020
Walking in the Shadow: A New Perspective on Descent Directions for
  Constrained Minimization
Walking in the Shadow: A New Perspective on Descent Directions for Constrained Minimization
Hassan Mortagy
Swati Gupta
S. Pokutta
16
7
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
24
50
0
14 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
25
66
0
03 Jun 2020
Detached Error Feedback for Distributed SGD with Random Sparsification
Detached Error Feedback for Distributed SGD with Random Sparsification
An Xu
Heng-Chiao Huang
31
9
0
11 Apr 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast
  Convergence
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
11
181
0
24 Feb 2020
Global Convergence and Variance-Reduced Optimization for a Class of
  Nonconvex-Nonconcave Minimax Problems
Global Convergence and Variance-Reduced Optimization for a Class of Nonconvex-Nonconcave Minimax Problems
Junchi Yang
Negar Kiyavash
Niao He
21
83
0
22 Feb 2020
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
A Unified Convergence Analysis for Shuffling-Type Gradient Methods
Lam M. Nguyen
Quoc Tran-Dinh
Dzung Phan
Phuong Ha Nguyen
Marten van Dijk
26
78
0
19 Feb 2020
Better Theory for SGD in the Nonconvex World
Better Theory for SGD in the Nonconvex World
Ahmed Khaled
Peter Richtárik
11
178
0
09 Feb 2020
Complexity Guarantees for Polyak Steps with Momentum
Complexity Guarantees for Polyak Steps with Momentum
Mathieu Barré
Adrien B. Taylor
Alexandre d’Aspremont
12
26
0
03 Feb 2020
Convergence and sample complexity of gradient methods for the model-free
  linear quadratic regulator problem
Convergence and sample complexity of gradient methods for the model-free linear quadratic regulator problem
Hesameddin Mohammadi
A. Zare
Mahdi Soltanolkotabi
M. Jovanović
30
121
0
26 Dec 2019
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive
  Step Size
Fast Stochastic Ordinal Embedding with Variance Reduction and Adaptive Step Size
Ke Ma
Jinshan Zeng
Qianqian Xu
Xiaochun Cao
Wei Liu
Yuan Yao
20
3
0
01 Dec 2019
On the Convergence of Local Descent Methods in Federated Learning
On the Convergence of Local Descent Methods in Federated Learning
Farzin Haddadpour
M. Mahdavi
FedML
16
265
0
31 Oct 2019
Linear-Quadratic Mean-Field Reinforcement Learning: Convergence of Policy Gradient Methods
Linear-Quadratic Mean-Field Reinforcement Learning: Convergence of Policy Gradient Methods
René Carmona
Mathieu Laurière
Zongjun Tan
35
61
0
09 Oct 2019
Stochastic gradient descent for hybrid quantum-classical optimization
Stochastic gradient descent for hybrid quantum-classical optimization
R. Sweke
Frederik Wilde
Johannes Jakob Meyer
Maria Schuld
Paul K. Fährmann
Barthélémy Meynard-Piganeau
Jens Eisert
17
236
0
02 Oct 2019
Differentially Private Meta-Learning
Differentially Private Meta-Learning
Jeffrey Li
M. Khodak
S. Caldas
Ameet Talwalkar
FedML
23
106
0
12 Sep 2019
On the Theory of Policy Gradient Methods: Optimality, Approximation, and
  Distribution Shift
On the Theory of Policy Gradient Methods: Optimality, Approximation, and Distribution Shift
Alekh Agarwal
Sham Kakade
J. Lee
G. Mahajan
11
315
0
01 Aug 2019
Adversarial Attack Generation Empowered by Min-Max Optimization
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
B. Li
AAML
23
35
0
09 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
21
185
0
05 Jun 2019
Controlling Neural Networks via Energy Dissipation
Controlling Neural Networks via Energy Dissipation
Michael Möller
Thomas Möllenhoff
Daniel Cremers
25
17
0
05 Apr 2019
Provable Guarantees for Gradient-Based Meta-Learning
Provable Guarantees for Gradient-Based Meta-Learning
M. Khodak
Maria-Florina Balcan
Ameet Talwalkar
FedML
17
147
0
27 Feb 2019
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite
  Nonconvex Optimization
ProxSARAH: An Efficient Algorithmic Framework for Stochastic Composite Nonconvex Optimization
Nhan H. Pham
Lam M. Nguyen
Dzung Phan
Quoc Tran-Dinh
11
139
0
15 Feb 2019
Solving Non-Convex Non-Concave Min-Max Games Under Polyak-Łojasiewicz
  Condition
Solving Non-Convex Non-Concave Min-Max Games Under Polyak-Łojasiewicz Condition
Maziar Sanjabi
Meisam Razaviyayn
J. Lee
6
35
0
07 Dec 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an
  Accelerated Perceptron
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark W. Schmidt
28
296
0
16 Oct 2018
Exponential Convergence Time of Gradient Descent for One-Dimensional
  Deep Linear Neural Networks
Exponential Convergence Time of Gradient Descent for One-Dimensional Deep Linear Neural Networks
Ohad Shamir
22
45
0
23 Sep 2018
SEGA: Variance Reduction via Gradient Sketching
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
23
71
0
09 Sep 2018
Convergence of Cubic Regularization for Nonconvex Optimization under KL
  Property
Convergence of Cubic Regularization for Nonconvex Optimization under KL Property
Yi Zhou
Zhe Wang
Yingbin Liang
19
23
0
22 Aug 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
25
146
0
20 Jun 2018
Previous
1234
Next