ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2307.15868
14
15

Faster Stochastic Algorithms for Minimax Optimization under Polyak--Łojasiewicz Conditions

29 July 2023
Le‐Yu Chen
Boyuan Yao
Luo Luo
ArXivPDFHTML
Abstract

This paper considers stochastic first-order algorithms for minimax optimization under Polyak--{\L}ojasiewicz (PL) conditions. We propose SPIDER-GDA for solving the finite-sum problem of the form min⁡xmax⁡yf(x,y)≜1n∑i=1nfi(x,y)\min_x \max_y f(x,y)\triangleq \frac{1}{n} \sum_{i=1}^n f_i(x,y)minx​maxy​f(x,y)≜n1​∑i=1n​fi​(x,y), where the objective function f(x,y)f(x,y)f(x,y) is μx\mu_xμx​-PL in xxx and μy\mu_yμy​-PL in yyy; and each fi(x,y)f_i(x,y)fi​(x,y) is LLL-smooth. We prove SPIDER-GDA could find an ϵ\epsilonϵ-optimal solution within O((n+n κxκy2)log⁡(1/ϵ)){\mathcal O}\left((n + \sqrt{n}\,\kappa_x\kappa_y^2)\log (1/\epsilon)\right)O((n+n​κx​κy2​)log(1/ϵ)) stochastic first-order oracle (SFO) complexity, which is better than the state-of-the-art method whose SFO upper bound is O((n+n2/3κxκy2)log⁡(1/ϵ)){\mathcal O}\big((n + n^{2/3}\kappa_x\kappa_y^2)\log (1/\epsilon)\big)O((n+n2/3κx​κy2​)log(1/ϵ)), where κx≜L/μx\kappa_x\triangleq L/\mu_xκx​≜L/μx​ and κy≜L/μy\kappa_y\triangleq L/\mu_yκy​≜L/μy​. For the ill-conditioned case, we provide an accelerated algorithm to reduce the computational cost further. It achieves O~((n+n κxκy)log⁡2(1/ϵ))\tilde{{\mathcal O}}\big((n+\sqrt{n}\,\kappa_x\kappa_y)\log^2 (1/\epsilon)\big)O~((n+n​κx​κy​)log2(1/ϵ)) SFO upper bound when κy≳n\kappa_y \gtrsim \sqrt{n}κy​≳n​. Our ideas also can be applied to the more general setting that the objective function only satisfies PL condition for one variable. Numerical experiments validate the superiority of proposed methods.

View on arXiv
Comments on this paper