Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1608.04636
Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
16 August 2016
Hamed Karimi
J. Nutini
Mark W. Schmidt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"
50 / 167 papers shown
Title
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Amir Ali Farzin
Yuen-Man Pun
Iman Shames
31
0
0
04 May 2025
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
46
0
0
03 May 2025
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
39
0
0
30 Apr 2025
AlphaGrad: Non-Linear Gradient Normalization Optimizer
Soham Sane
ODL
48
0
0
22 Apr 2025
Investigating Large Language Models in Diagnosing Students' Cognitive Skills in Math Problem-solving
Hyoungwook Jin
Yoonsu Kim
Dongyun Jung
Seungju Kim
Kiyoon Choi
J. Son
Juho Kim
LRM
58
0
0
01 Apr 2025
Gradient-free stochastic optimization for additive models
A. Akhavan
Alexandre B. Tsybakov
26
0
0
03 Mar 2025
Faster WIND: Accelerating Iterative Best-of-
N
N
N
Distillation for LLM Alignment
Tong Yang
Jincheng Mei
H. Dai
Zixin Wen
Shicong Cen
Dale Schuurmans
Yuejie Chi
Bo Dai
43
4
0
20 Feb 2025
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
56
1
0
28 Jan 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
74
0
0
28 Jan 2025
A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
Jingxin Zhan
Yuchen Xin
Kaicheng Jin
Zhihua Zhang
27
0
0
19 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF
Flint Xiaofeng Fan
Cheston Tan
Yew-Soon Ong
Roger Wattenhofer
Wei Tsang Ooi
80
1
0
20 Dec 2024
S-CFE: Simple Counterfactual Explanations
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
S. Pokutta
26
0
0
21 Oct 2024
Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training
Zhanpeng Zhou
Mingze Wang
Yuchen Mao
Bingrui Li
Junchi Yan
AAML
57
0
0
14 Oct 2024
Nesterov acceleration in benignly non-convex landscapes
Kanan Gupta
Stephan Wojtowytsch
34
2
0
10 Oct 2024
Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference
Qining Zhang
Lei Ying
OffRL
37
2
0
25 Sep 2024
Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions
Siqiao Mu
Diego Klabjan
MU
50
3
0
15 Sep 2024
Mask in the Mirror: Implicit Sparsification
Tom Jacobs
R. Burkholz
40
3
0
19 Aug 2024
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
Antonio Orvieto
Lin Xiao
37
2
0
05 Jul 2024
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
48
0
0
03 Jun 2024
Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
Sihan Zeng
Thinh T. Doan
49
5
0
15 May 2024
Learning Optimal Deterministic Policies with Stochastic Policy Gradients
Alessandro Montenegro
Marco Mussi
Alberto Maria Metelli
Matteo Papini
38
2
0
03 May 2024
Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand
Slawek Smyl
Boris N. Oreshkin
Paweł Pełka
Grzegorz Dudek
AI4TS
32
0
0
26 Apr 2024
Understanding and Improving Training-free Loss-based Diffusion Guidance
Yifei Shen
Xinyang Jiang
Yezhen Wang
Yifan Yang
Dongqi Han
Dongsheng Li
FaML
21
5
0
19 Mar 2024
Directional Smoothness and Gradient Methods: Convergence and Adaptivity
Aaron Mishkin
Ahmed Khaled
Yuanhao Wang
Aaron Defazio
Robert Mansel Gower
36
6
0
06 Mar 2024
Level Set Teleportation: An Optimization Perspective
Aaron Mishkin
A. Bietti
Robert Mansel Gower
28
1
0
05 Mar 2024
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
33
4
0
07 Feb 2024
Careful with that Scalpel: Improving Gradient Surgery with an EMA
Yu-Guan Hsieh
James Thornton
Eugène Ndiaye
Michal Klein
Marco Cuturi
Pierre Ablin
MedIm
31
0
0
05 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
19
5
0
02 Feb 2024
Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
R. Karandikar
M. Vidyasagar
25
7
0
05 Dec 2023
Data-Agnostic Model Poisoning against Federated Learning: A Graph Autoencoder Approach
Kai Li
Jingjing Zheng
Xinnan Yuan
W. Ni
Ozgur B. Akan
H. Vincent Poor
AAML
10
15
0
30 Nov 2023
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
39
1
0
29 Nov 2023
A Large Deviations Perspective on Policy Gradient Algorithms
Wouter Jongeneel
Daniel Kuhn
Mengmeng Li
11
1
0
13 Nov 2023
Adaptive Mirror Descent Bilevel Optimization
Feihu Huang
28
1
0
08 Nov 2023
Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods
A. Ma
Yangchen Pan
Amir-massoud Farahmand
AAML
25
5
0
13 Aug 2023
Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm
A. Ramesh
Aaron Mishkin
Mark W. Schmidt
Yihan Zhou
J. Lavington
Jennifer She
24
1
0
03 Jul 2023
A First Order Meta Stackelberg Method for Robust Federated Learning
Yunian Pan
Tao Li
Henger Li
Tianyi Xu
Zizhan Zheng
Quanyan Zhu
FedML
24
10
0
23 Jun 2023
Distributed Random Reshuffling Methods with Improved Convergence
Kun-Yen Huang
Linli Zhou
Shi Pu
24
4
0
21 Jun 2023
Achieving Consensus over Compact Submanifolds
Jiang Hu
Jiaojiao Zhang
Kangkang Deng
23
3
0
07 Jun 2023
Minimum intrinsic dimension scaling for entropic optimal transport
Austin J. Stromme
18
10
0
06 Jun 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
24
6
0
25 May 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
21
6
0
08 Mar 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
19
18
0
07 Mar 2023
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Feihu Huang
Chunyu Xuan
Xinrui Wang
Siqi Zhang
Songcan Chen
26
7
0
07 Mar 2023
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate Updates
Tianlong Nan
Yuan Gao
Christian Kroer
17
2
0
01 Mar 2023
From Optimization to Sampling Through Gradient Flows
Nicolas García Trillos
B. Hosseini
D. Sanz-Alonso
15
11
0
22 Feb 2023
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
Mo Zhou
Jian-Xiong Lu
23
7
0
11 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
24
56
0
08 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
30
5
0
30 Jan 2023
Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering
Rui Zhu
Di Tang
Siyuan Tang
Guanhong Tao
Shiqing Ma
XiaoFeng Wang
Haixu Tang
DD
11
3
0
29 Jan 2023
1
2
3
4
Next