ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.04636
  4. Cited By
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition

Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition

16 August 2016
Hamed Karimi
J. Nutini
Mark W. Schmidt
ArXivPDFHTML

Papers citing "Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition"

50 / 167 papers shown
Title
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Minimisation of Quasar-Convex Functions Using Random Zeroth-Order Oracles
Amir Ali Farzin
Yuen-Man Pun
Iman Shames
31
0
0
04 May 2025
Towards Trustworthy Federated Learning with Untrusted Participants
Towards Trustworthy Federated Learning with Untrusted Participants
Youssef Allouah
R. Guerraoui
John Stephan
FedML
46
0
0
03 May 2025
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search
Nuojin Cheng
Alireza Doostan
Stephen Becker
39
0
0
30 Apr 2025
AlphaGrad: Non-Linear Gradient Normalization Optimizer
AlphaGrad: Non-Linear Gradient Normalization Optimizer
Soham Sane
ODL
48
0
0
22 Apr 2025
Investigating Large Language Models in Diagnosing Students' Cognitive Skills in Math Problem-solving
Investigating Large Language Models in Diagnosing Students' Cognitive Skills in Math Problem-solving
Hyoungwook Jin
Yoonsu Kim
Dongyun Jung
Seungju Kim
Kiyoon Choi
J. Son
Juho Kim
LRM
58
0
0
01 Apr 2025
Gradient-free stochastic optimization for additive models
Gradient-free stochastic optimization for additive models
A. Akhavan
Alexandre B. Tsybakov
26
0
0
03 Mar 2025
Faster WIND: Accelerating Iterative Best-of-$N$ Distillation for LLM Alignment
Faster WIND: Accelerating Iterative Best-of-NNN Distillation for LLM Alignment
Tong Yang
Jincheng Mei
H. Dai
Zixin Wen
Shicong Cen
Dale Schuurmans
Yuejie Chi
Bo Dai
43
4
0
20 Feb 2025
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
56
1
0
28 Jan 2025
Convergence Analysis of the Wasserstein Proximal Algorithm beyond Geodesic Convexity
Shuailong Zhu
Xiaohui Chen
74
0
0
28 Jan 2025
A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
A Regularized Online Newton Method for Stochastic Convex Bandits with Linear Vanishing Noise
Jingxin Zhan
Yuchen Xin
Kaicheng Jin
Zhihua Zhang
27
0
0
19 Jan 2025
Non-geodesically-convex optimization in the Wasserstein space
Non-geodesically-convex optimization in the Wasserstein space
Hoang Phuc Hau Luu
Hanlin Yu
Bernardo Williams
Petrus Mikkola
Marcelo Hartmann
Kai Puolamaki
Arto Klami
53
2
0
08 Jan 2025
FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF
FedRLHF: A Convergence-Guaranteed Federated Framework for Privacy-Preserving and Personalized RLHF
Flint Xiaofeng Fan
Cheston Tan
Yew-Soon Ong
Roger Wattenhofer
Wei Tsang Ooi
80
1
0
20 Dec 2024
S-CFE: Simple Counterfactual Explanations
S-CFE: Simple Counterfactual Explanations
Shpresim Sadiku
Moritz Wagner
Sai Ganesh Nagarajan
S. Pokutta
26
0
0
21 Oct 2024
Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training
Sharpness-Aware Minimization Efficiently Selects Flatter Minima Late in Training
Zhanpeng Zhou
Mingze Wang
Yuchen Mao
Bingrui Li
Junchi Yan
AAML
57
0
0
14 Oct 2024
Nesterov acceleration in benignly non-convex landscapes
Nesterov acceleration in benignly non-convex landscapes
Kanan Gupta
Stephan Wojtowytsch
34
2
0
10 Oct 2024
Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference
Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference
Qining Zhang
Lei Ying
OffRL
37
2
0
25 Sep 2024
Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions
Rewind-to-Delete: Certified Machine Unlearning for Nonconvex Functions
Siqiao Mu
Diego Klabjan
MU
50
3
0
15 Sep 2024
Mask in the Mirror: Implicit Sparsification
Mask in the Mirror: Implicit Sparsification
Tom Jacobs
R. Burkholz
40
3
0
19 Aug 2024
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton
  Stepsizes
An Adaptive Stochastic Gradient Method with Non-negative Gauss-Newton Stepsizes
Antonio Orvieto
Lin Xiao
37
2
0
05 Jul 2024
Demystifying SGD with Doubly Stochastic Gradients
Demystifying SGD with Doubly Stochastic Gradients
Kyurae Kim
Joohwan Ko
Yian Ma
Jacob R. Gardner
48
0
0
03 Jun 2024
Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
Sihan Zeng
Thinh T. Doan
49
5
0
15 May 2024
Learning Optimal Deterministic Policies with Stochastic Policy Gradients
Learning Optimal Deterministic Policies with Stochastic Policy Gradients
Alessandro Montenegro
Marco Mussi
Alberto Maria Metelli
Matteo Papini
38
2
0
03 May 2024
Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand
Any-Quantile Probabilistic Forecasting of Short-Term Electricity Demand
Slawek Smyl
Boris N. Oreshkin
Paweł Pełka
Grzegorz Dudek
AI4TS
32
0
0
26 Apr 2024
Understanding and Improving Training-free Loss-based Diffusion Guidance
Understanding and Improving Training-free Loss-based Diffusion Guidance
Yifei Shen
Xinyang Jiang
Yezhen Wang
Yifan Yang
Dongqi Han
Dongsheng Li
FaML
21
5
0
19 Mar 2024
Directional Smoothness and Gradient Methods: Convergence and Adaptivity
Directional Smoothness and Gradient Methods: Convergence and Adaptivity
Aaron Mishkin
Ahmed Khaled
Yuanhao Wang
Aaron Defazio
Robert Mansel Gower
36
6
0
06 Mar 2024
Level Set Teleportation: An Optimization Perspective
Level Set Teleportation: An Optimization Perspective
Aaron Mishkin
A. Bietti
Robert Mansel Gower
28
1
0
05 Mar 2024
Non-convergence to global minimizers for Adam and stochastic gradient
  descent optimization and constructions of local minimizers in the training of
  artificial neural networks
Non-convergence to global minimizers for Adam and stochastic gradient descent optimization and constructions of local minimizers in the training of artificial neural networks
Arnulf Jentzen
Adrian Riekert
33
4
0
07 Feb 2024
Careful with that Scalpel: Improving Gradient Surgery with an EMA
Careful with that Scalpel: Improving Gradient Surgery with an EMA
Yu-Guan Hsieh
James Thornton
Eugène Ndiaye
Michal Klein
Marco Cuturi
Pierre Ablin
MedIm
31
0
0
05 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
19
5
0
02 Feb 2024
Convergence Rates for Stochastic Approximation: Biased Noise with
  Unbounded Variance, and Applications
Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications
R. Karandikar
M. Vidyasagar
25
7
0
05 Dec 2023
Data-Agnostic Model Poisoning against Federated Learning: A Graph
  Autoencoder Approach
Data-Agnostic Model Poisoning against Federated Learning: A Graph Autoencoder Approach
Kai Li
Jingjing Zheng
Xinnan Yuan
W. Ni
Ozgur B. Akan
H. Vincent Poor
AAML
10
15
0
30 Nov 2023
Critical Influence of Overparameterization on Sharpness-aware Minimization
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
39
1
0
29 Nov 2023
A Large Deviations Perspective on Policy Gradient Algorithms
A Large Deviations Perspective on Policy Gradient Algorithms
Wouter Jongeneel
Daniel Kuhn
Mengmeng Li
11
1
0
13 Nov 2023
Adaptive Mirror Descent Bilevel Optimization
Adaptive Mirror Descent Bilevel Optimization
Feihu Huang
28
1
0
08 Nov 2023
Understanding the robustness difference between stochastic gradient
  descent and adaptive gradient methods
Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods
A. Ma
Yangchen Pan
Amir-massoud Farahmand
AAML
25
5
0
13 Aug 2023
Analyzing and Improving Greedy 2-Coordinate Updates for
  Equality-Constrained Optimization via Steepest Descent in the 1-Norm
Analyzing and Improving Greedy 2-Coordinate Updates for Equality-Constrained Optimization via Steepest Descent in the 1-Norm
A. Ramesh
Aaron Mishkin
Mark W. Schmidt
Yihan Zhou
J. Lavington
Jennifer She
24
1
0
03 Jul 2023
A First Order Meta Stackelberg Method for Robust Federated Learning
A First Order Meta Stackelberg Method for Robust Federated Learning
Yunian Pan
Tao Li
Henger Li
Tianyi Xu
Zizhan Zheng
Quanyan Zhu
FedML
24
10
0
23 Jun 2023
Distributed Random Reshuffling Methods with Improved Convergence
Distributed Random Reshuffling Methods with Improved Convergence
Kun-Yen Huang
Linli Zhou
Shi Pu
24
4
0
21 Jun 2023
Achieving Consensus over Compact Submanifolds
Achieving Consensus over Compact Submanifolds
Jiang Hu
Jiaojiao Zhang
Kangkang Deng
23
3
0
07 Jun 2023
Minimum intrinsic dimension scaling for entropic optimal transport
Minimum intrinsic dimension scaling for entropic optimal transport
Austin J. Stromme
18
10
0
06 Jun 2023
How to escape sharp minima with random perturbations
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
24
6
0
25 May 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional
  Compression
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
21
6
0
08 Mar 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with
  Nonconvex Lower-Level
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
19
18
0
07 Mar 2023
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Enhanced Adaptive Gradient Algorithms for Nonconvex-PL Minimax Optimization
Feihu Huang
Chunyu Xuan
Xinrui Wang
Siqi Zhang
Songcan Chen
26
7
0
07 Mar 2023
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate
  Updates
Fast and Interpretable Dynamics for Fisher Markets via Block-Coordinate Updates
Tianlong Nan
Yuan Gao
Christian Kroer
17
2
0
01 Mar 2023
From Optimization to Sampling Through Gradient Flows
From Optimization to Sampling Through Gradient Flows
Nicolas García Trillos
B. Hosseini
D. Sanz-Alonso
15
11
0
22 Feb 2023
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
A Policy Gradient Framework for Stochastic Optimal Control Problems with Global Convergence Guarantee
Mo Zhou
Jian-Xiong Lu
23
7
0
11 Feb 2023
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
DoG is SGD's Best Friend: A Parameter-Free Dynamic Step Size Schedule
Maor Ivgi
Oliver Hinder
Y. Carmon
ODL
24
56
0
08 Feb 2023
Distributed Stochastic Optimization under a General Variance Condition
Distributed Stochastic Optimization under a General Variance Condition
Kun-Yen Huang
Xiao Li
Shin-Yi Pu
FedML
30
5
0
30 Jan 2023
Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering
Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering
Rui Zhu
Di Tang
Siyuan Tang
Guanhong Tao
Shiqing Ma
XiaoFeng Wang
Haixu Tang
DD
11
3
0
29 Jan 2023
1234
Next