Papers
Communities
Organizations
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.00133
Cited By
v1
v2 (latest)
Deep Learning with Differential Privacy
1 July 2016
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Deep Learning with Differential Privacy"
50 / 2,788 papers shown
Title
Formal Privacy Guarantees with Invariant Statistics
Young Hyun Cho
Jordan Awan
62
2
0
22 Oct 2024
Data Obfuscation through Latent Space Projection (LSP) for Privacy-Preserving AI Governance: Case Studies in Medical Diagnosis and Finance Fraud Detection
Mahesh Vaijainthymala Krishnamoorthy
33
0
0
22 Oct 2024
Dual-Model Defense: Safeguarding Diffusion Models from Membership Inference Attacks through Disjoint Data Splitting
Bao Q. Tran
Viet Anh Nguyen
Anh Tran
Toan M. Tran
113
0
0
22 Oct 2024
SoK: Dataset Copyright Auditing in Machine Learning Systems
L. Du
Xuanru Zhou
M. Chen
Chusong Zhang
Zhou Su
Peng Cheng
Jiming Chen
Zhikun Zhang
MLAU
142
7
0
22 Oct 2024
Extracting Spatiotemporal Data from Gradients with Large Language Models
Lele Zheng
Yang Cao
Renhe Jiang
Kenjiro Taura
Yulong Shen
Sheng Li
Masatoshi Yoshikawa
44
1
0
21 Oct 2024
DMM: Distributed Matrix Mechanism for Differentially-Private Federated Learning Based on Constant-Overhead Linear Secret Resharing
Alexander Bienstock
Ujjwal Kumar
Antigoni Polychroniadou
FedML
87
0
0
21 Oct 2024
What's New in My Data? Novelty Exploration via Contrastive Generation
Masaru Isonuma
Ivan Titov
76
0
0
18 Oct 2024
DPFedBank: Crafting a Privacy-Preserving Federated Learning Framework for Financial Institutions with Policy Pillars
Peilin He
Chenkai Lin
Isabella Montoya
58
0
0
17 Oct 2024
From Gradient Clipping to Normalization for Heavy Tailed SGD
Florian Hübler
Ilyas Fatkhullin
Niao He
127
10
0
17 Oct 2024
DEeR: Deviation Eliminating and Noise Regulating for Privacy-preserving Federated Low-rank Adaptation
Meilu Zhu
Axiu Mao
Jun Liu
Yixuan Yuan
105
3
0
16 Oct 2024
Communication-Efficient and Tensorized Federated Fine-Tuning of Large Language Models
Sajjad Ghiasvand
Yifan Yang
Zhiyu Xue
Mahnoosh Alizadeh
Zheng Zhang
Ramtin Pedarsani
FedML
177
5
0
16 Oct 2024
Differential Privacy on Trust Graphs
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Serena Wang
65
1
0
15 Oct 2024
Secure Stateful Aggregation: A Practical Protocol with Applications in Differentially-Private Federated Learning
Marshall Ball
James Bell-Clark
Adria Gascon
Peter Kairouz
Sewoong Oh
Zhiye Xie
FedML
84
1
0
15 Oct 2024
Bridging Gaps: Federated Multi-View Clustering in Heterogeneous Hybrid Views
Xinyue Chen
Yazhou Ren
Jie Xu
Fangfei Lin
X. Pu
Yang Yang
FedML
113
0
0
12 Oct 2024
Data Deletion for Linear Regression with Noisy SGD
Zhangjie Xia
Chi-Hua Wang
Guang Cheng
118
2
0
12 Oct 2024
Federated Learning in Practice: Reflections and Projections
Katharine Daly
Hubert Eichner
Peter Kairouz
H. B. McMahan
Daniel Ramage
Zheng Xu
FedML
96
13
0
11 Oct 2024
Evaluating Differentially Private Synthetic Data Generation in High-Stakes Domains
Krithika Ramesh
Nupoor Gandhi
Pulkit Madaan
Lisa Bauer
Charith Peris
Anjalie Field
SyDa
81
3
0
10 Oct 2024
Privately Learning from Graphs with Applications in Fine-tuning Large Language Models
Haoteng Yin
Rongzhe Wei
Eli Chien
P. Li
104
1
0
10 Oct 2024
Federated Graph Learning for Cross-Domain Recommendation
Ziqi Yang
Zhaopeng Peng
Zihui Wang
Jianzhong Qi
Chaochao Chen
Weike Pan
Chenglu Wen
Cheng-Yu Wang
Xiaoliang Fan
FedML
118
4
0
10 Oct 2024
Noise is All You Need: Private Second-Order Convergence of Noisy SGD
Dmitrii Avdiukhin
Michael Dinitz
Chenglin Fan
G. Yaroslavtsev
76
1
0
09 Oct 2024
Bridging Today and the Future of Humanity: AI Safety in 2024 and Beyond
Shanshan Han
196
1
0
09 Oct 2024
KnowledgeSG: Privacy-Preserving Synthetic Text Generation with Knowledge Distillation from Server
Wenhao Wang
Xiaoyu Liang
Rui Ye
Jingyi Chai
Siheng Chen
Yanfeng Wang
SyDa
100
6
0
08 Oct 2024
Near Exact Privacy Amplification for Matrix Mechanisms
Christopher A. Choquette-Choo
Arun Ganesh
Saminul Haque
Thomas Steinke
Abhradeep Thakurta
149
10
0
08 Oct 2024
The Last Iterate Advantage: Empirical Auditing and Principled Heuristic Analysis of Differentially Private SGD
Thomas Steinke
Milad Nasr
Arun Ganesh
Borja Balle
Christopher A. Choquette-Choo
Matthew Jagielski
Jamie Hayes
Abhradeep Thakurta
Adam Smith
Andreas Terzis
155
10
0
08 Oct 2024
SoK: Towards Security and Safety of Edge AI
Tatjana Wingarz
Anne Lauscher
Janick Edinger
Dominik Kaaser
Stefan Schulte
Mathias Fischer
92
0
0
07 Oct 2024
Camel: Communication-Efficient and Maliciously Secure Federated Learning in the Shuffle Model of Differential Privacy
Shuangqing Xu
Yifeng Zheng
Zhongyun Hua
FedML
68
3
0
04 Oct 2024
DiSK: Differentially Private Optimizer with Simplified Kalman Filter for Noise Reduction
Xinwei Zhang
Zhiqi Bu
Borja Balle
Mingyi Hong
Meisam Razaviyayn
Vahab Mirrokni
151
2
0
04 Oct 2024
Fine-Tuning Language Models with Differential Privacy through Adaptive Noise Allocation
Xianzhi Li
Ran Zmigrod
Zhiqiang Ma
Xiaomo Liu
Xiaodan Zhu
123
3
0
03 Oct 2024
PFGuard: A Generative Framework with Privacy and Fairness Safeguards
Soyeon Kim
Yuji Roh
Geon Heo
Steven Euijong Whang
134
0
0
03 Oct 2024
Undesirable Memorization in Large Language Models: A Survey
Ali Satvaty
Suzan Verberne
Fatih Turkmen
ELM
PILM
212
10
0
03 Oct 2024
Adaptively Private Next-Token Prediction of Large Language Models
James Flemings
Meisam Razaviyayn
Murali Annavaram
145
1
0
02 Oct 2024
Differentially Private Parameter-Efficient Fine-tuning for Large ASR Models
Hongbin Liu
Lun Wang
Om Thakkar
Abhradeep Thakurta
Arun Narayanan
128
1
0
02 Oct 2024
Thinking Outside of the Differential Privacy Box: A Case Study in Text Privatization with Language Model Prompting
Stephen Meisenbacher
Florian Matthes
74
3
0
01 Oct 2024
Differentially Private Active Learning: Balancing Effective Data Selection and Privacy
Kristian Schwethelm
Johannes Kaiser
Jonas Kuntzer
Mehmet Yigitsoy
Daniel Rueckert
Georgios Kaissis
139
0
0
01 Oct 2024
Answer When Needed, Forget When Not: Language Models Pretend to Forget via In-Context Knowledge Unlearning
Shota Takashiro
Takeshi Kojima
Andrew Gambardella
Qi Cao
Yusuke Iwasawa
Y. Matsuo
CLL
MU
KELM
50
3
0
01 Oct 2024
Psychometrics for Hypnopaedia-Aware Machinery via Chaotic Projection of Artificial Mental Imagery
Ching-Chun Chang
Kai Gao
Shuying Xu
Anastasia Kordoni
Christopher Leckie
Isao Echizen
79
0
0
29 Sep 2024
Subject Data Auditing via Source Inference Attack in Cross-Silo Federated Learning
Jiaxin Li
Marco Arazzi
Antonino Nocera
Mauro Conti
81
2
0
28 Sep 2024
Quantum delegated and federated learning via quantum homomorphic encryption
Weikang Li
Dong-Ling Deng
FedML
59
1
0
28 Sep 2024
Localizing Memorization in SSL Vision Encoders
Wenhao Wang
Adam Dziedzic
Michael Backes
Franziska Boenisch
98
2
0
27 Sep 2024
CURATE: Scaling-up Differentially Private Causal Graph Discovery
Payel Bhattacharjee
Ravi Tandon
64
0
0
27 Sep 2024
In-depth Analysis of Privacy Threats in Federated Learning for Medical Data
B. Das
M. H. Amini
Yanzhao Wu
57
0
0
27 Sep 2024
Trustworthy AI: Securing Sensitive Data in Large Language Models
G. Feretzakis
V. Verykios
68
18
0
26 Sep 2024
On the Implicit Relation Between Low-Rank Adaptation and Differential Privacy
Saber Malekmohammadi
G. Farnadi
236
2
0
26 Sep 2024
KIPPS: Knowledge infusion in Privacy Preserving Synthetic Data Generation
Anantaa Kotal
Anupam Joshi
73
1
0
25 Sep 2024
Investigating Privacy Attacks in the Gray-Box Setting to Enhance Collaborative Learning Schemes
Federico Mazzone
Ahmad Al Badawi
Y. Polyakov
Maarten Everts
Florian Hahn
Andreas Peter
MIACV
AAML
85
0
0
25 Sep 2024
Differential Privacy Regularization: Protecting Training Data Through Loss Function Regularization
Francisco Aguilera-Martínez
Fernando Berzal
77
0
0
25 Sep 2024
Immersion and Invariance-based Coding for Privacy-Preserving Federated Learning
H. Hayati
C. Murguia
N. van de Wouw
FedML
64
0
0
25 Sep 2024
Privacy Evaluation Benchmarks for NLP Models
Wei Huang
Yinggui Wang
Cen Chen
ELM
SILM
89
1
0
24 Sep 2024
SDBA: A Stealthy and Long-Lasting Durable Backdoor Attack in Federated Learning
Minyeong Choe
Cheolhee Park
Changho Seo
Hyunil Kim
SILM
AAML
FedML
100
1
0
23 Sep 2024
Accelerated Stochastic ExtraGradient: Mixing Hessian and Gradient Similarity to Reduce Communication in Distributed and Federated Learning
Dmitry Bylinkin
Kirill Degtyarev
Aleksandr Beznosikov
FedML
84
0
0
22 Sep 2024
Previous
1
2
3
...
5
6
7
...
54
55
56
Next