ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.08813
  4. Cited By
European Union regulations on algorithmic decision-making and a "right
  to explanation"

European Union regulations on algorithmic decision-making and a "right to explanation"

28 June 2016
B. Goodman
Seth Flaxman
    FaML
    AILaw
ArXivPDFHTML

Papers citing "European Union regulations on algorithmic decision-making and a "right to explanation""

50 / 217 papers shown
Title
Sparsity in Optimal Randomized Classification Trees
Sparsity in Optimal Randomized Classification Trees
R. Blanquero
E. Carrizosa
Cristina Molero-Río
Dolores Romero Morales
33
46
0
21 Feb 2020
Post-Comparison Mitigation of Demographic Bias in Face Recognition Using
  Fair Score Normalization
Post-Comparison Mitigation of Demographic Bias in Face Recognition Using Fair Score Normalization
Philipp Terhörst
J. Kolf
Naser Damer
Florian Kirchbuchner
Arjan Kuijper
19
56
0
10 Feb 2020
Implementations in Machine Ethics: A Survey
Implementations in Machine Ethics: A Survey
Suzanne Tolmeijer
Markus Kneer
Cristina Sarasua
Markus Christen
Abraham Bernstein
FaML
26
71
0
21 Jan 2020
On Interpretability of Artificial Neural Networks: A Survey
On Interpretability of Artificial Neural Networks: A Survey
Fenglei Fan
Jinjun Xiong
Mengzhou Li
Ge Wang
AAML
AI4CE
43
301
0
08 Jan 2020
Revealing Neural Network Bias to Non-Experts Through Interactive
  Counterfactual Examples
Revealing Neural Network Bias to Non-Experts Through Interactive Counterfactual Examples
Chelsea M. Myers
Evan Freed
Luis Fernando Laris Pardo
Anushay Furqan
S. Risi
Jichen Zhu
CML
18
12
0
07 Jan 2020
Transparent Classification with Multilayer Logical Perceptrons and
  Random Binarization
Transparent Classification with Multilayer Logical Perceptrons and Random Binarization
Zhuo Wang
Wei Zhang
Ning Liu
Jianyong Wang
19
29
0
10 Dec 2019
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Counterfactual Explanation Algorithms for Behavioral and Textual Data
Yanou Ramon
David Martens
F. Provost
Theodoros Evgeniou
FAtt
31
87
0
04 Dec 2019
Domain Knowledge Aided Explainable Artificial Intelligence for Intrusion
  Detection and Response
Domain Knowledge Aided Explainable Artificial Intelligence for Intrusion Detection and Response
Sheikh Rabiul Islam
W. Eberle
S. Ghafoor
Ambareen Siraj
Mike Rogers
19
39
0
22 Nov 2019
Algorithmic decision-making in AVs: Understanding ethical and technical
  concerns for smart cities
Algorithmic decision-making in AVs: Understanding ethical and technical concerns for smart cities
H. S. M. Lim
Araz Taeihagh
27
82
0
29 Oct 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies,
  Opportunities and Challenges toward Responsible AI
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
41
6,125
0
22 Oct 2019
Towards Best Practice in Explaining Neural Network Decisions with LRP
Towards Best Practice in Explaining Neural Network Decisions with LRP
M. Kohlbrenner
Alexander Bauer
Shinichi Nakajima
Alexander Binder
Wojciech Samek
Sebastian Lapuschkin
22
147
0
22 Oct 2019
AI for Explaining Decisions in Multi-Agent Environments
AI for Explaining Decisions in Multi-Agent Environments
Sarit Kraus
A. Azaria
J. Fiosina
Maike Greve
Noam Hazon
L. Kolbe
Tim-Benjamin Lembcke
J. P. Müller
Sören Schleibaum
M. Vollrath
20
40
0
10 Oct 2019
What does it mean to solve the problem of discrimination in hiring?
  Social, technical and legal perspectives from the UK on automated hiring
  systems
What does it mean to solve the problem of discrimination in hiring? Social, technical and legal perspectives from the UK on automated hiring systems
Javier Sánchez-Monedero
L. Dencik
L. Edwards
11
131
0
28 Sep 2019
Towards Explainable Artificial Intelligence
Towards Explainable Artificial Intelligence
Wojciech Samek
K. Müller
XAI
32
437
0
26 Sep 2019
Measure Contribution of Participants in Federated Learning
Measure Contribution of Participants in Federated Learning
Guan Wang
Charlie Xiaoqian Dang
Ziye Zhou
FedML
47
195
0
17 Sep 2019
Preventing the Generation of Inconsistent Sets of Classification Rules
Preventing the Generation of Inconsistent Sets of Classification Rules
T. Z. Miranda
D. B. Sardinha
R. Cerri
18
2
0
23 Aug 2019
The Price of Interpretability
The Price of Interpretability
Dimitris Bertsimas
A. Delarue
Patrick Jaillet
Sébastien Martin
23
33
0
08 Jul 2019
On Explaining Machine Learning Models by Evolving Crucial and Compact
  Features
On Explaining Machine Learning Models by Evolving Crucial and Compact Features
M. Virgolin
Tanja Alderliesten
Peter A. N. Bosman
19
28
0
04 Jul 2019
Machine Learning Testing: Survey, Landscapes and Horizons
Machine Learning Testing: Survey, Landscapes and Horizons
Jie M. Zhang
Mark Harman
Lei Ma
Yang Liu
VLM
AILaw
39
741
0
19 Jun 2019
Incorporating Priors with Feature Attribution on Text Classification
Incorporating Priors with Feature Attribution on Text Classification
Frederick Liu
Besim Avci
FAtt
FaML
36
120
0
19 Jun 2019
Disentangled Attribution Curves for Interpreting Random Forests and
  Boosted Trees
Disentangled Attribution Curves for Interpreting Random Forests and Boosted Trees
Summer Devlin
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
19
14
0
18 May 2019
How Case Based Reasoning Explained Neural Networks: An XAI Survey of
  Post-Hoc Explanation-by-Example in ANN-CBR Twins
How Case Based Reasoning Explained Neural Networks: An XAI Survey of Post-Hoc Explanation-by-Example in ANN-CBR Twins
Mark T. Keane
Eoin M. Kenny
13
82
0
17 May 2019
From What to How: An Initial Review of Publicly Available AI Ethics
  Tools, Methods and Research to Translate Principles into Practices
From What to How: An Initial Review of Publicly Available AI Ethics Tools, Methods and Research to Translate Principles into Practices
Jessica Morley
Luciano Floridi
Libby Kinsey
Anat Elhalal
16
56
0
15 May 2019
Interpretability with Accurate Small Models
Interpretability with Accurate Small Models
Abhishek Ghose
Balaraman Ravindran
23
1
0
04 May 2019
Explaining Deep Neural Networks with a Polynomial Time Algorithm for
  Shapley Values Approximation
Explaining Deep Neural Networks with a Polynomial Time Algorithm for Shapley Values Approximation
Marco Ancona
Cengiz Öztireli
Markus Gross
FAtt
TDI
30
223
0
26 Mar 2019
Explaining individual predictions when features are dependent: More
  accurate approximations to Shapley values
Explaining individual predictions when features are dependent: More accurate approximations to Shapley values
K. Aas
Martin Jullum
Anders Løland
FAtt
TDI
16
606
0
25 Mar 2019
Copying Machine Learning Classifiers
Copying Machine Learning Classifiers
Irene Unceta
Jordi Nin
O. Pujol
14
18
0
05 Mar 2019
Unmasking Clever Hans Predictors and Assessing What Machines Really
  Learn
Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
Sebastian Lapuschkin
S. Wäldchen
Alexander Binder
G. Montavon
Wojciech Samek
K. Müller
17
996
0
26 Feb 2019
Towards Automatic Concept-based Explanations
Towards Automatic Concept-based Explanations
Amirata Ghorbani
James Wexler
James Zou
Been Kim
FAtt
LRM
38
19
0
07 Feb 2019
Fairwashing: the risk of rationalization
Fairwashing: the risk of rationalization
Ulrich Aïvodji
Hiromi Arai
O. Fortineau
Sébastien Gambs
Satoshi Hara
Alain Tapp
FaML
19
142
0
28 Jan 2019
SecureBoost: A Lossless Federated Learning Framework
SecureBoost: A Lossless Federated Learning Framework
Kewei Cheng
Tao Fan
Yilun Jin
Yang Liu
Tianjian Chen
Dimitrios Papadopoulos
Qiang Yang
FedML
25
578
0
25 Jan 2019
Explaining Explanations to Society
Explaining Explanations to Society
Leilani H. Gilpin
Cecilia Testart
Nathaniel Fruchter
Julius Adebayo
XAI
24
34
0
19 Jan 2019
Fair and Unbiased Algorithmic Decision Making: Current State and Future
  Challenges
Fair and Unbiased Algorithmic Decision Making: Current State and Future Challenges
Songül Tolan
FaML
24
31
0
15 Jan 2019
Interpretable machine learning: definitions, methods, and applications
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin-Xia Yu
XAI
HAI
52
1,423
0
14 Jan 2019
Metrics for Explainable AI: Challenges and Prospects
Metrics for Explainable AI: Challenges and Prospects
R. Hoffman
Shane T. Mueller
Gary Klein
Jordan Litman
XAI
10
719
0
11 Dec 2018
A Multidisciplinary Survey and Framework for Design and Evaluation of
  Explainable AI Systems
A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems
Sina Mohseni
Niloofar Zarei
Eric D. Ragan
36
102
0
28 Nov 2018
Abduction-Based Explanations for Machine Learning Models
Abduction-Based Explanations for Machine Learning Models
Alexey Ignatiev
Nina Narodytska
Sasha Rubin
FAtt
20
219
0
26 Nov 2018
Sanity Checks for Saliency Maps
Sanity Checks for Saliency Maps
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
67
1,931
0
08 Oct 2018
Stakeholders in Explainable AI
Stakeholders in Explainable AI
Alun D. Preece
Daniel Harborne
Dave Braines
Richard J. Tomsett
Supriyo Chakraborty
15
154
0
29 Sep 2018
Hows and Whys of Artificial Intelligence for Public Sector Decisions:
  Explanation and Evaluation
Hows and Whys of Artificial Intelligence for Public Sector Decisions: Explanation and Evaluation
Alun D. Preece
Rob Ashelford
Harry Armstrong
Dave Braines
22
6
0
28 Sep 2018
Bias Amplification in Artificial Intelligence Systems
Bias Amplification in Artificial Intelligence Systems
Kirsten Lloyd
6
43
0
20 Sep 2018
Imparting Interpretability to Word Embeddings while Preserving Semantic
  Structure
Imparting Interpretability to Word Embeddings while Preserving Semantic Structure
Lutfi Kerem Senel
Ihsan Utlu
Furkan Şahinuç
H. Ozaktas
Aykut Kocc
32
14
0
19 Jul 2018
RuleMatrix: Visualizing and Understanding Classifiers with Rules
RuleMatrix: Visualizing and Understanding Classifiers with Rules
Yao Ming
Huamin Qu
E. Bertini
FAtt
20
214
0
17 Jul 2018
Optimal Piecewise Local-Linear Approximations
Optimal Piecewise Local-Linear Approximations
Kartik Ahuja
W. Zame
M. Schaar
FAtt
27
1
0
27 Jun 2018
Interpretable to Whom? A Role-based Model for Analyzing Interpretable
  Machine Learning Systems
Interpretable to Whom? A Role-based Model for Analyzing Interpretable Machine Learning Systems
Richard J. Tomsett
Dave Braines
Daniel Harborne
Alun D. Preece
Supriyo Chakraborty
FaML
29
164
0
20 Jun 2018
Hierarchical interpretations for neural network predictions
Hierarchical interpretations for neural network predictions
Chandan Singh
W. James Murdoch
Bin Yu
31
145
0
14 Jun 2018
Assessing the impact of machine intelligence on human behaviour: an
  interdisciplinary endeavour
Assessing the impact of machine intelligence on human behaviour: an interdisciplinary endeavour
Emilia Gómez
Carlos Castillo
V. Charisi
V. Dahl
G. Deco
...
Núria Sebastián
Xavier Serra
Joan Serrà
Songül Tolan
Karina Vold
19
11
0
07 Jun 2018
Producing radiologist-quality reports for interpretable artificial
  intelligence
Producing radiologist-quality reports for interpretable artificial intelligence
William Gale
Luke Oakden-Rayner
G. Carneiro
A. Bradley
L. Palmer
MedIm
19
46
0
01 Jun 2018
Explaining Explanations: An Overview of Interpretability of Machine
  Learning
Explaining Explanations: An Overview of Interpretability of Machine Learning
Leilani H. Gilpin
David Bau
Ben Z. Yuan
Ayesha Bajwa
Michael A. Specter
Lalana Kagal
XAI
40
1,842
0
31 May 2018
Regularization Learning Networks: Deep Learning for Tabular Datasets
Regularization Learning Networks: Deep Learning for Tabular Datasets
Ira Shavitt
E. Segal
AI4CE
26
20
0
16 May 2018
Previous
12345
Next