ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1911.09853
11
39

Domain Knowledge Aided Explainable Artificial Intelligence for Intrusion Detection and Response

22 November 2019
Sheikh Rabiul Islam
W. Eberle
S. Ghafoor
Ambareen Siraj
Mike Rogers
ArXivPDFHTML
Abstract

Artificial Intelligence (AI) has become an integral part of modern-day security solutions for its ability to learn very complex functions and handling "Big Data". However, the lack of explainability and interpretability of successful AI models is a key stumbling block when trust in a model's prediction is critical. This leads to human intervention, which in turn results in a delayed response or decision. While there have been major advancements in the speed and performance of AI-based intrusion detection systems, the response is still at human speed when it comes to explaining and interpreting a specific prediction or decision. In this work, we infuse popular domain knowledge (i.e., CIA principles) in our model for better explainability and validate the approach on a network intrusion detection test case. Our experimental results suggest that the infusion of domain knowledge provides better explainability as well as a faster decision or response. In addition, the infused domain knowledge generalizes the model to work well with unknown attacks, as well as opens the path to adapt to a large stream of network traffic from numerous IoT devices.

View on arXiv
Comments on this paper