Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.08813
Cited By
European Union regulations on algorithmic decision-making and a "right to explanation"
28 June 2016
B. Goodman
Seth Flaxman
FaML
AILaw
Re-assign community
ArXiv
PDF
HTML
Papers citing
"European Union regulations on algorithmic decision-making and a "right to explanation""
50 / 217 papers shown
Title
Machine Learning Practices Outside Big Tech: How Resource Constraints Challenge Responsible Development
Aspen K. Hopkins
Serena Booth
29
45
0
06 Oct 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
357
0
04 Oct 2021
XPROAX-Local explanations for text classification with progressive neighborhood approximation
Yi Cai
Arthur Zimek
Eirini Ntoutsi
25
5
0
30 Sep 2021
Understanding Spending Behavior: Recurrent Neural Network Explanation and Interpretation
Charl Maree
C. Omlin
AI4TS
26
5
0
24 Sep 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
48
5
0
15 Sep 2021
Amazon SageMaker Clarify: Machine Learning Bias Detection and Explainability in the Cloud
Michaela Hardt
Xiaoguang Chen
Xiaoyi Cheng
Michele Donini
J. Gelman
...
Muhammad Bilal Zafar
Sanjiv Ranjan Das
Kevin Haas
Tyler Hill
K. Kenthapadi
ELM
FaML
36
42
0
07 Sep 2021
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey
Richard Dazeley
Peter Vamplew
Francisco Cruz
32
60
0
20 Aug 2021
How to Certify Machine Learning Based Safety-critical Systems? A Systematic Literature Review
Florian Tambon
Gabriel Laberge
Le An
Amin Nikanjam
Paulina Stevia Nouwou Mindom
Y. Pequignot
Foutse Khomh
G. Antoniol
E. Merlo
François Laviolette
37
66
0
26 Jul 2021
Model Transferability With Responsive Decision Subjects
Yatong Chen
Zeyu Tang
Kun Zhang
Yang Liu
45
10
0
13 Jul 2021
Levels of explainable artificial intelligence for human-aligned conversational explanations
Richard Dazeley
Peter Vamplew
Cameron Foale
Charlotte Young
Sunil Aryal
F. Cruz
30
90
0
07 Jul 2021
Taxonomy of Machine Learning Safety: A Survey and Primer
Sina Mohseni
Haotao Wang
Zhiding Yu
Chaowei Xiao
Zhangyang Wang
J. Yadawa
31
31
0
09 Jun 2021
To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods
E. Amparore
Alan Perotti
P. Bajardi
FAtt
33
68
0
01 Jun 2021
A Review on Explainability in Multimodal Deep Neural Nets
Gargi Joshi
Rahee Walambe
K. Kotecha
31
140
0
17 May 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
34
184
0
15 May 2021
Improving Fairness in Speaker Recognition
Gianni Fenu
Giacomo Medda
Mirko Marras
Giacomo Meloni
21
19
0
29 Apr 2021
A First Look: Towards Explainable TextVQA Models via Visual and Textual Explanations
Varun Nagaraj Rao
Xingjian Zhen
K. Hovsepian
Mingwei Shen
37
18
0
29 Apr 2021
On the Computational Intelligibility of Boolean Classifiers
Gilles Audemard
S. Bellart
Louenas Bounia
F. Koriche
Jean-Marie Lagniez
Pierre Marquis
24
56
0
13 Apr 2021
Efficient Explanations from Empirical Explainers
Robert Schwarzenberg
Nils Feldhus
Sebastian Möller
FAtt
34
9
0
29 Mar 2021
Fairness and Transparency in Recommendation: The Users' Perspective
Nasim Sonboli
Jessie J. Smith
Florencia Cabral Berenfus
Robin Burke
Casey Fiesler
FaML
28
65
0
16 Mar 2021
GRIT: Fast, Interpretable, and Verifiable Goal Recognition with Learned Decision Trees for Autonomous Driving
Cillian Brewitt
Balint Gyevnar
Samuel Garcin
Stefano V. Albrecht
18
30
0
10 Mar 2021
Counterfactuals and Causability in Explainable Artificial Intelligence: Theory, Algorithms, and Applications
Yu-Liang Chou
Catarina Moreira
P. Bruza
Chun Ouyang
Joaquim A. Jorge
CML
47
176
0
07 Mar 2021
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms
Miguel Á. Carreira-Perpiñán
Suryabhan Singh Hada
CML
AAML
18
33
0
01 Mar 2021
CausalX: Causal Explanations and Block Multilinear Factor Analysis
M. Alex O. Vasilescu
Eric Kim
Xiao-Song Zeng
CML
36
10
0
25 Feb 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
68
415
0
15 Feb 2021
Player-Centered AI for Automatic Game Personalization: Open Problems
Jichen Zhu
Santiago Ontañón
15
25
0
15 Feb 2021
Characterizing Intersectional Group Fairness with Worst-Case Comparisons
A. Ghosh
Lea Genuit
Mary Reagan
FaML
94
51
0
05 Jan 2021
"Brilliant AI Doctor" in Rural China: Tensions and Challenges in AI-Powered CDSS Deployment
Dakuo Wang
Liuping Wang
Zhan Zhang
Ding Wang
Haiyi Zhu
Yvonne Gao
Xiangmin Fan
Feng Tian
51
144
0
04 Jan 2021
The Three Ghosts of Medical AI: Can the Black-Box Present Deliver?
Thomas P. Quinn
Stephan Jacobs
M. Senadeera
Vuong Le
S. Coghlan
33
112
0
10 Dec 2020
TimeSHAP: Explaining Recurrent Models through Sequence Perturbations
João Bento
Pedro Saleiro
André F. Cruz
Mário A. T. Figueiredo
P. Bizarro
FAtt
AI4TS
24
88
0
30 Nov 2020
Now You See Me (CME): Concept-based Model Extraction
Dmitry Kazhdan
B. Dimanov
M. Jamnik
Pietro Lio
Adrian Weller
25
72
0
25 Oct 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
47
7
0
23 Oct 2020
Landscape of R packages for eXplainable Artificial Intelligence
Szymon Maksymiuk
Alicja Gosiewska
P. Biecek
XAI
43
21
0
24 Sep 2020
Model extraction from counterfactual explanations
Ulrich Aïvodji
Alexandre Bolot
Sébastien Gambs
MIACV
MLAU
33
51
0
03 Sep 2020
Computing Optimal Decision Sets with SAT
Jinqiang Yu
Alexey Ignatiev
Peter Stuckey
P. L. Bodic
FAtt
22
26
0
29 Jul 2020
Explainability of Intelligent Transportation Systems using Knowledge Compilation: a Traffic Light Controller Case
S. Wollenstein-Betech
Christian Muise
Christos G. Cassandras
I. Paschalidis
Y. Khazaeni
15
5
0
09 Jul 2020
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
30
627
0
01 Jul 2020
Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction
Esther Puyol-Antón
Chong Chen
J. Clough
B. Ruijsink
B. Sidhu
...
M. Elliott
Vishal S. Mehta
Daniel Rueckert
C. Rinaldi
A. King
21
32
0
24 Jun 2020
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
37
199
0
22 Jun 2020
Towards Analogy-Based Explanations in Machine Learning
Eyke Hüllermeier
XAI
11
20
0
23 May 2020
The challenges of deploying artificial intelligence models in a rapidly evolving pandemic
Yipeng Hu
J. Jacob
Geoffrey J. M. Parker
D. Hawkes
J. Hurst
Danail Stoyanov
OOD
23
65
0
19 May 2020
Applying Genetic Programming to Improve Interpretability in Machine Learning Models
Leonardo Augusto Ferreira
F. G. Guimarães
Rodrigo C. P. Silva
6
37
0
18 May 2020
The Grammar of Interactive Explanatory Model Analysis
Hubert Baniecki
Dariusz Parzych
P. Biecek
24
44
0
01 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
49
371
0
30 Apr 2020
Learning a Formula of Interpretability to Learn Interpretable Formulas
M. Virgolin
A. D. Lorenzo
Eric Medvet
Francesca Randone
25
33
0
23 Apr 2020
Under the Hood of Neural Networks: Characterizing Learned Representations by Functional Neuron Populations and Network Ablations
Richard Meyes
Constantin Waubert de Puiseau
Andres Felipe Posada-Moreno
Tobias Meisen
AI4CE
30
21
0
02 Apr 2020
RelatIF: Identifying Explanatory Training Examples via Relative Influence
Elnaz Barshan
Marc-Etienne Brunet
Gintare Karolina Dziugaite
TDI
47
30
0
25 Mar 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
51
82
0
17 Mar 2020
Measuring and improving the quality of visual explanations
Agnieszka Grabska-Barwiñska
XAI
FAtt
24
3
0
14 Mar 2020
Fairness by Explicability and Adversarial SHAP Learning
James M. Hickey
Pietro G. Di Stefano
V. Vasileiou
FAtt
FedML
33
19
0
11 Mar 2020
Causal Interpretability for Machine Learning -- Problems, Methods and Evaluation
Raha Moraffah
Mansooreh Karami
Ruocheng Guo
A. Raglin
Huan Liu
CML
ELM
XAI
29
213
0
09 Mar 2020
Previous
1
2
3
4
5
Next