Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.05336
Cited By
v1
v2
v3
v4
v5
v6 (latest)
On the Expressive Power of Deep Neural Networks
16 June 2016
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"On the Expressive Power of Deep Neural Networks"
50 / 267 papers shown
Title
Sharp bounds for the number of regions of maxout networks and vertices of Minkowski sums
Guido Montúfar
Yue Ren
Leon Zhang
64
41
0
16 Apr 2021
Training Deep Capsule Networks with Residual Connections
Josef Gugglberger
David Peer
A. Rodríguez-Sánchez
3DPC
MedIm
10
11
0
15 Apr 2021
Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective
Wuyang Chen
Xinyu Gong
Zhangyang Wang
OOD
169
239
0
23 Feb 2021
Deep ReLU Networks Preserve Expected Length
Boris Hanin
Ryan Jeong
David Rolnick
68
14
0
21 Feb 2021
Scaling Up Exact Neural Network Compression by ReLU Stability
Thiago Serra
Xin Yu
Abhinav Kumar
Srikumar Ramalingam
66
24
0
15 Feb 2021
High-Performance Large-Scale Image Recognition Without Normalization
Andrew Brock
Soham De
Samuel L. Smith
Karen Simonyan
VLM
319
525
0
11 Feb 2021
Depth separation beyond radial functions
Luca Venturi
Samy Jelassi
Tristan Ozuch
Joan Bruna
69
15
0
02 Feb 2021
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition
Ming Lin
Pichao Wang
Zhenhong Sun
Hesen Chen
Xiuyu Sun
Qi Qian
Hao Li
Rong Jin
84
109
0
01 Feb 2021
A simple geometric proof for the benefit of depth in ReLU networks
Asaf Amrami
Yoav Goldberg
45
1
0
18 Jan 2021
Data-Driven Robust Optimization using Unsupervised Deep Learning
Marc Goerigk
Jannis Kurtz
OOD
55
9
0
19 Nov 2020
Conflicting Bundles: Adapting Architectures Towards the Improved Training of Deep Neural Networks
David Peer
Sebastian Stabinger
A. Rodríguez-Sánchez
21
6
0
05 Nov 2020
Do Wide and Deep Networks Learn the Same Things? Uncovering How Neural Network Representations Vary with Width and Depth
Thao Nguyen
M. Raghu
Simon Kornblith
OOD
96
283
0
29 Oct 2020
On the Number of Linear Functions Composing Deep Neural Network: Towards a Refined Definition of Neural Networks Complexity
Yuuki Takai
Akiyoshi Sannai
Matthieu Cordonnier
84
4
0
23 Oct 2020
Depth-Width Trade-offs for Neural Networks via Topological Entropy
Kaifeng Bu
Yaobo Zhang
Qingxian Luo
52
8
0
15 Oct 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
197
80
0
17 Sep 2020
When Hardness of Approximation Meets Hardness of Learning
Eran Malach
Shai Shalev-Shwartz
55
9
0
18 Aug 2020
SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud
Stefanos Laskaridis
Stylianos I. Venieris
Mario Almeida
Ilias Leontiadis
Nicholas D. Lane
97
275
0
14 Aug 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
97
51
0
09 Jul 2020
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
T. L. J. Ng
A. Zammit‐Mangion
36
6
0
01 Jul 2020
Interpreting and Disentangling Feature Components of Various Complexity from DNNs
Jie Ren
Mingjie Li
Zexu Liu
Quanshi Zhang
CoGe
77
18
0
29 Jun 2020
The Depth-to-Width Interplay in Self-Attention
Yoav Levine
Noam Wies
Or Sharir
Hofit Bata
Amnon Shashua
137
46
0
22 Jun 2020
Measuring Model Complexity of Neural Networks with Curve Activation Functions
X. Hu
Weiqing Liu
Jiang Bian
J. Pei
63
22
0
16 Jun 2020
Approximating Lipschitz continuous functions with GroupSort neural networks
Ugo Tanielian
Maxime Sangnier
Gérard Biau
82
39
0
09 Jun 2020
In Proximity of ReLU DNN, PWA Function, and Explicit MPC
Saman Fahandezh-Saadi
Masayoshi Tomizuka
42
4
0
09 Jun 2020
Liquid Time-constant Networks
Ramin Hasani
Mathias Lechner
Alexander Amini
Daniela Rus
Radu Grosu
AI4TS
AI4CE
93
228
0
08 Jun 2020
On the Number of Linear Regions of Convolutional Neural Networks
Huan Xiong
Lei Huang
Mengyang Yu
Li Liu
Fan Zhu
Ling Shao
MLT
83
68
0
01 Jun 2020
The Expressive Power of a Class of Normalizing Flow Models
Zhifeng Kong
Kamalika Chaudhuri
TPM
82
53
0
31 May 2020
Provably Good Solutions to the Knapsack Problem via Neural Networks of Bounded Size
Christoph Hertrich
M. Skutella
99
22
0
28 May 2020
Approximation in shift-invariant spaces with deep ReLU neural networks
Yunfei Yang
Zhen Li
Yang Wang
76
14
0
25 May 2020
PDE constraints on smooth hierarchical functions computed by neural networks
Khashayar Filom
Konrad Paul Kording
Roozbeh Farhoodi
29
0
0
18 May 2020
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
43
0
0
15 May 2020
Vibration Analysis in Bearings for Failure Prevention using CNN
L. A. Pinedo-Sanchez
D. Mercado-Ravell
Carlos A. Carballo-Monsivais
13
44
0
06 May 2020
PERMDNN: Efficient Compressed DNN Architecture with Permuted Diagonal Matrices
Chunhua Deng
Siyu Liao
Yi Xie
Keshab K. Parhi
Xuehai Qian
Bo Yuan
83
93
0
23 Apr 2020
Q-CapsNets: A Specialized Framework for Quantizing Capsule Networks
Alberto Marchisio
Beatrice Bussolino
Alessio Colucci
Maurizio Martina
Guido Masera
Mohamed Bennai
3DPC
37
16
0
15 Apr 2020
Better Depth-Width Trade-offs for Neural Networks through the lens of Dynamical Systems
Vaggos Chatziafratis
Sai Ganesh Nagarajan
Ioannis Panageas
59
15
0
02 Mar 2020
Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
Zhuohan Li
Eric Wallace
Sheng Shen
Kevin Lin
Kurt Keutzer
Dan Klein
Joseph E. Gonzalez
138
151
0
26 Feb 2020
It's Not What Machines Can Learn, It's What We Cannot Teach
Gal Yehuda
Moshe Gabel
Assaf Schuster
FaML
63
38
0
21 Feb 2020
Investigating the Compositional Structure Of Deep Neural Networks
Francesco Craighero
Fabrizio Angaroni
Alex Graudenzi
Fabio Stella
M. Antoniotti
FAtt
56
5
0
17 Feb 2020
Variable-Viewpoint Representations for 3D Object Recognition
Tengyu Ma
Joel Michelson
James Ainooson
Deepayan Sanyal
Xiaohan Wang
M. Kunda
21
0
0
08 Feb 2020
PLLay: Efficient Topological Layer based on Persistence Landscapes
Kwangho Kim
Jisu Kim
Manzil Zaheer
Joon Sik Kim
Frédéric Chazal
Larry A. Wasserman
45
13
0
07 Feb 2020
A Deep Conditioning Treatment of Neural Networks
Naman Agarwal
Pranjal Awasthi
Satyen Kale
AI4CE
115
16
0
04 Feb 2020
Evaluating the Progress of Deep Learning for Visual Relational Concepts
Sebastian Stabinger
Peer David
J. Piater
A. Rodríguez-Sánchez
79
19
0
29 Jan 2020
Sharp Rate of Convergence for Deep Neural Network Classifiers under the Teacher-Student Setting
Tianyang Hu
Zuofeng Shang
Guang Cheng
123
19
0
19 Jan 2020
Sparse Weight Activation Training
Md Aamir Raihan
Tor M. Aamodt
138
73
0
07 Jan 2020
Lossless Compression of Deep Neural Networks
Thiago Serra
Abhinav Kumar
Srikumar Ramalingam
106
57
0
01 Jan 2020
An Analysis of the Expressiveness of Deep Neural Network Architectures Based on Their Lipschitz Constants
Siqi Zhou
Angela P. Schoellig
44
12
0
24 Dec 2019
Depth-Width Trade-offs for ReLU Networks via Sharkovsky's Theorem
Vaggos Chatziafratis
Sai Ganesh Nagarajan
Ioannis Panageas
Tianlin Li
65
21
0
09 Dec 2019
Stochastic Feedforward Neural Networks: Universal Approximation
Thomas Merkh
Guido Montúfar
43
8
0
22 Oct 2019
The Expressivity and Training of Deep Neural Networks: toward the Edge of Chaos?
Gege Zhang
Gang-cheng Li
Ningwei Shen
Weidong Zhang
61
6
0
11 Oct 2019
Reverse-Engineering Deep ReLU Networks
David Rolnick
Konrad Paul Kording
81
105
0
02 Oct 2019
Previous
1
2
3
4
5
6
Next