ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04474
  4. Cited By
Learning to learn by gradient descent by gradient descent

Learning to learn by gradient descent by gradient descent

14 June 2016
Marcin Andrychowicz
Misha Denil
Sergio Gomez Colmenarejo
Matthew W. Hoffman
David Pfau
Tom Schaul
Brendan Shillingford
Nando de Freitas
ArXivPDFHTML

Papers citing "Learning to learn by gradient descent by gradient descent"

50 / 394 papers shown
Title
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for
  Meta-Learning
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for Meta-Learning
Jun Shu
Xiang Yuan
Deyu Meng
Zongben Xu
33
4
0
13 May 2023
B2Opt: Learning to Optimize Black-box Optimization with Little Budget
B2Opt: Learning to Optimize Black-box Optimization with Little Budget
Xiaobin Li
K. Wu
Xiaoyu Zhang
Handing Wang
Qingbin Liu
32
9
0
24 Apr 2023
Learning To Optimize Quantum Neural Network Without Gradients
Learning To Optimize Quantum Neural Network Without Gradients
Ankit Kulshrestha
Xiaoyuan Liu
Hayato Ushijima-Mwesigwa
Ilya Safro
40
5
0
15 Apr 2023
AGI for Agriculture
AGI for Agriculture
Guoyu Lu
Sheng Li
Gengchen Mai
Jin Sun
Dajiang Zhu
...
R. Xu
Daniel Petti
Changying Li
Tianming Liu
Changying Li
AI4CE
48
17
0
12 Apr 2023
Learning Agile, Vision-based Drone Flight: from Simulation to Reality
Learning Agile, Vision-based Drone Flight: from Simulation to Reality
Davide Scaramuzza
Elia Kaufmann
42
3
0
09 Apr 2023
Learning to Recover Spectral Reflectance from RGB Images
Learning to Recover Spectral Reflectance from RGB Images
Dong Huo
Jian Wang
Yiming Qian
Yee-Hong Yang
21
0
0
04 Apr 2023
Meta-Learning Parameterized First-Order Optimizers using Differentiable
  Convex Optimization
Meta-Learning Parameterized First-Order Optimizers using Differentiable Convex Optimization
Tanmay Gautam
Samuel Pfrommer
Somayeh Sojoudi
26
2
0
29 Mar 2023
Mathematical Challenges in Deep Learning
Mathematical Challenges in Deep Learning
V. Nia
Guojun Zhang
I. Kobyzev
Michael R. Metel
Xinlin Li
...
S. Hemati
M. Asgharian
Linglong Kong
Wulong Liu
Boxing Chen
AI4CE
VLM
37
1
0
24 Mar 2023
TransPoser: Transformer as an Optimizer for Joint Object Shape and Pose
  Estimation
TransPoser: Transformer as an Optimizer for Joint Object Shape and Pose Estimation
Yuta Yoshitake
Mai Nishimura
S. Nobuhara
Ko Nishino
ViT
36
2
0
23 Mar 2023
Improving physics-informed neural networks with meta-learned
  optimization
Improving physics-informed neural networks with meta-learned optimization
Alexander Bihlo
PINN
36
18
0
13 Mar 2023
MetaGrad: Adaptive Gradient Quantization with Hypernetworks
MetaGrad: Adaptive Gradient Quantization with Hypernetworks
Kaixin Xu
Alina Hui Xiu Lee
Ziyuan Zhao
Zhe Wang
Min-man Wu
Weisi Lin
MQ
28
1
0
04 Mar 2023
Learning not to Regret
Learning not to Regret
David Sychrovský
Michal Sustr
Elnaz Davoodi
Michael Bowling
Marc Lanctot
Martin Schmid
37
3
0
02 Mar 2023
Meta Learning to Bridge Vision and Language Models for Multimodal
  Few-Shot Learning
Meta Learning to Bridge Vision and Language Models for Multimodal Few-Shot Learning
Ivona Najdenkoska
Xiantong Zhen
M. Worring
VLM
26
18
0
28 Feb 2023
Permutation Equivariant Neural Functionals
Permutation Equivariant Neural Functionals
Allan Zhou
Kaien Yang
Kaylee Burns
Adriano Cardace
Yiding Jiang
Samuel Sokota
J. Zico Kolter
Chelsea Finn
35
47
0
27 Feb 2023
A Meta-Learning Approach to Population-Based Modelling of Structures
A Meta-Learning Approach to Population-Based Modelling of Structures
G. Tsialiamanis
N. Dervilis
D. Wagg
K. Worden
18
0
0
15 Feb 2023
Symbolic Discovery of Optimization Algorithms
Symbolic Discovery of Optimization Algorithms
Xiangning Chen
Chen Liang
Da Huang
Esteban Real
Kaiyuan Wang
...
Xuanyi Dong
Thang Luong
Cho-Jui Hsieh
Yifeng Lu
Quoc V. Le
67
353
0
13 Feb 2023
Unified Functional Hashing in Automatic Machine Learning
Unified Functional Hashing in Automatic Machine Learning
Ryan Gillard
S. Jonany
Yingjie Miao
Michael Munn
Connal de Souza
Jonathan Dungay
Chen Liang
David R. So
Quoc V. Le
Esteban Real
26
2
0
10 Feb 2023
Learning to Optimize for Reinforcement Learning
Learning to Optimize for Reinforcement Learning
Qingfeng Lan
Rupam Mahmood
Shuicheng Yan
Zhongwen Xu
OffRL
31
6
0
03 Feb 2023
Mnemosyne: Learning to Train Transformers with Transformers
Mnemosyne: Learning to Train Transformers with Transformers
Deepali Jain
K. Choromanski
Kumar Avinava Dubey
Sumeet Singh
Vikas Sindhwani
Tingnan Zhang
Jie Tan
OffRL
39
9
0
02 Feb 2023
Adaptive Siamese Tracking with a Compact Latent Network
Adaptive Siamese Tracking with a Compact Latent Network
Xingping Dong
Jianbing Shen
Fatih Porikli
Jiebo Luo
Ling Shao
35
30
0
02 Feb 2023
Online Loss Function Learning
Online Loss Function Learning
Christian Raymond
Qi Chen
Bing Xue
Mengjie Zhang
38
5
0
30 Jan 2023
Federated Automatic Differentiation
Federated Automatic Differentiation
Keith Rush
Zachary B. Charles
Zachary Garrett
FedML
34
1
0
18 Jan 2023
Human-Timescale Adaptation in an Open-Ended Task Space
Human-Timescale Adaptation in an Open-Ended Task Space
Adaptive Agent Team
Jakob Bauer
Kate Baumli
Satinder Baveja
Feryal M. P. Behbahani
...
Jakub Sygnowski
K. Tuyls
Sarah York
Alexander Zacherl
Lei Zhang
LM&Ro
OffRL
AI4CE
LRM
38
109
0
18 Jan 2023
Unpacking the "Black Box" of AI in Education
Unpacking the "Black Box" of AI in Education
Nabeel Gillani
R. Eynon
Catherine Chiabaut
Kelsey Finkel
36
58
0
31 Dec 2022
Multimodal Prototype-Enhanced Network for Few-Shot Action Recognition
Multimodal Prototype-Enhanced Network for Few-Shot Action Recognition
Xin Ni
Yong Liu
Hao Wen
Yatai Ji
Jing Xiao
Yujiu Yang
37
9
0
09 Dec 2022
General-Purpose In-Context Learning by Meta-Learning Transformers
General-Purpose In-Context Learning by Meta-Learning Transformers
Louis Kirsch
James Harrison
Jascha Narain Sohl-Dickstein
Luke Metz
46
72
0
08 Dec 2022
Learning to Optimize in Model Predictive Control
Learning to Optimize in Model Predictive Control
Jacob Sacks
Byron Boots
27
22
0
05 Dec 2022
Transformer-Based Learned Optimization
Transformer-Based Learned Optimization
Erik Gartner
Luke Metz
Mykhaylo Andriluka
C. Freeman
C. Sminchisescu
23
11
0
02 Dec 2022
Learning to Optimize with Dynamic Mode Decomposition
Learning to Optimize with Dynamic Mode Decomposition
Petr Simánek
Daniel Vasata
Pavel Kordík
31
5
0
29 Nov 2022
SparsePose: Sparse-View Camera Pose Regression and Refinement
SparsePose: Sparse-View Camera Pose Regression and Refinement
Samarth Sinha
Jason Y. Zhang
Andrea Tagliasacchi
Igor Gilitschenski
David B. Lindell
29
42
0
29 Nov 2022
Breaking Immutable: Information-Coupled Prototype Elaboration for
  Few-Shot Object Detection
Breaking Immutable: Information-Coupled Prototype Elaboration for Few-Shot Object Detection
Xiaonan Lu
Wenhui Diao
Yongqiang Mao
Junxi Li
Peijin Wang
Xian Sun
Kun Fu
ObjD
35
33
0
27 Nov 2022
Adaptive Prototypical Networks
Adaptive Prototypical Networks
Manas Gogoi
Sambhavi Tiwari
Shekhar Verma
28
2
0
22 Nov 2022
Discovering Evolution Strategies via Meta-Black-Box Optimization
Discovering Evolution Strategies via Meta-Black-Box Optimization
R. T. Lange
Tom Schaul
Yutian Chen
Tom Zahavy
Valenti Dallibard
Chris Xiaoxuan Lu
Satinder Singh
Sebastian Flennerhag
44
47
0
21 Nov 2022
VeLO: Training Versatile Learned Optimizers by Scaling Up
VeLO: Training Versatile Learned Optimizers by Scaling Up
Luke Metz
James Harrison
C. Freeman
Amil Merchant
Lucas Beyer
...
Naman Agrawal
Ben Poole
Igor Mordatch
Adam Roberts
Jascha Narain Sohl-Dickstein
35
60
0
17 Nov 2022
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
  From Theory to Practice
Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior: From Theory to Practice
Jonas Rothfuss
Martin Josifoski
Vincent Fortuin
Andreas Krause
45
9
0
14 Nov 2022
Tuning Language Models as Training Data Generators for
  Augmentation-Enhanced Few-Shot Learning
Tuning Language Models as Training Data Generators for Augmentation-Enhanced Few-Shot Learning
Yu Meng
Martin Michalski
Jiaxin Huang
Yu Zhang
Tarek F. Abdelzaher
Jiawei Han
VLM
64
47
0
06 Nov 2022
Rethinking the Metric in Few-shot Learning: From an Adaptive
  Multi-Distance Perspective
Rethinking the Metric in Few-shot Learning: From an Adaptive Multi-Distance Perspective
Jinxiang Lai
Siqian Yang
Guannan Jiang
Xi-Zhao Wang
Yuxi Li
...
Jun Liu
Bin-Bin Gao
Wei Zhang
Yuan Xie
Chengjie Wang
49
6
0
02 Nov 2022
A new benchmark for group distribution shifts in hand grasp regression
  for object manipulation. Can meta-learning raise the bar?
A new benchmark for group distribution shifts in hand grasp regression for object manipulation. Can meta-learning raise the bar?
Théo Morales
G. Lacey
OOD
38
0
0
31 Oct 2022
Meta-Learning Biologically Plausible Plasticity Rules with Random
  Feedback Pathways
Meta-Learning Biologically Plausible Plasticity Rules with Random Feedback Pathways
Navid Shervani-Tabar
Robert Rosenbaum
AI4CE
42
14
0
28 Oct 2022
Uncertainty-based Meta-Reinforcement Learning for Robust Radar Tracking
Uncertainty-based Meta-Reinforcement Learning for Robust Radar Tracking
Julius Ott
Lorenzo Servadei
Gianfranco Mauro
Thomas Stadelmayer
Avik Santra
Robert Wille
OOD
UQCV
39
3
0
26 Oct 2022
Deep domain adaptation for polyphonic melody extraction
Kavya Ranjan Saxena
Vipul Arora
29
0
0
22 Oct 2022
Solving Reasoning Tasks with a Slot Transformer
Solving Reasoning Tasks with a Slot Transformer
Ryan Faulkner
Daniel Zoran
LRM
26
1
0
20 Oct 2022
Towards Multi-Agent Reinforcement Learning driven Over-The-Counter
  Market Simulations
Towards Multi-Agent Reinforcement Learning driven Over-The-Counter Market Simulations
N. Vadori
Leo Ardon
Sumitra Ganesh
Thomas Spooner
Selim Amrouni
Jared Vann
Mengda Xu
Zeyu Zheng
T. Balch
Manuela Veloso
18
16
0
13 Oct 2022
A Unified Framework with Meta-dropout for Few-shot Learning
A Unified Framework with Meta-dropout for Few-shot Learning
Shaobo Lin
Xingyu Zeng
Rui Zhao
16
1
0
12 Oct 2022
Self-Validated Physics-Embedding Network: A General Framework for
  Inverse Modelling
Self-Validated Physics-Embedding Network: A General Framework for Inverse Modelling
Ruiyuan Kang
D. Kyritsis
P. Liatsis
AI4CE
PINN
16
5
0
12 Oct 2022
Neural Conservation Laws: A Divergence-Free Perspective
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
53
51
0
04 Oct 2022
Boosting Few-shot Fine-grained Recognition with Background Suppression
  and Foreground Alignment
Boosting Few-shot Fine-grained Recognition with Background Suppression and Foreground Alignment
Zican Zha
Hao Tang
Yunlian Sun
Jinhui Tang
57
75
0
04 Oct 2022
Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
  Meta-Learning
Rethinking Clustering-Based Pseudo-Labeling for Unsupervised Meta-Learning
Xingping Dong
Jianbing Shen
Ling Shao
32
7
0
27 Sep 2022
Learning to Learn with Generative Models of Neural Network Checkpoints
Learning to Learn with Generative Models of Neural Network Checkpoints
William S. Peebles
Ilija Radosavovic
Tim Brooks
Alexei A. Efros
Jitendra Malik
UQCV
75
65
0
26 Sep 2022
A Neural Template Matching Method to Detect Knee Joint Areas
A Neural Template Matching Method to Detect Knee Joint Areas
Juha Tiirola
MedIm
11
1
0
23 Sep 2022
Previous
12345678
Next