ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.01868
  4. Cited By
Unifying Count-Based Exploration and Intrinsic Motivation

Unifying Count-Based Exploration and Intrinsic Motivation

6 June 2016
Marc G. Bellemare
S. Srinivasan
Georg Ostrovski
Tom Schaul
D. Saxton
Rémi Munos
ArXivPDFHTML

Papers citing "Unifying Count-Based Exploration and Intrinsic Motivation"

50 / 333 papers shown
Title
Online Safety Assurance for Deep Reinforcement Learning
Online Safety Assurance for Deep Reinforcement Learning
Noga H. Rotman
Michael Schapira
Aviv Tamar
OffRL
38
5
0
07 Oct 2020
Latent World Models For Intrinsically Motivated Exploration
Latent World Models For Intrinsically Motivated Exploration
Aleksandr Ermolov
N. Sebe
25
25
0
05 Oct 2020
Novelty Search in Representational Space for Sample Efficient
  Exploration
Novelty Search in Representational Space for Sample Efficient Exploration
Ruo Yu Tao
Vincent François-Lavet
Joelle Pineau
30
43
0
28 Sep 2020
Explore and Explain: Self-supervised Navigation and Recounting
Explore and Explain: Self-supervised Navigation and Recounting
Roberto Bigazzi
Federico Landi
Marcella Cornia
S. Cascianelli
Lorenzo Baraldi
Rita Cucchiara
EgoV
LM&Ro
19
17
0
14 Jul 2020
Revisiting Fundamentals of Experience Replay
Revisiting Fundamentals of Experience Replay
W. Fedus
Prajit Ramachandran
Rishabh Agarwal
Yoshua Bengio
Hugo Larochelle
Mark Rowland
Will Dabney
KELM
OffRL
30
234
0
13 Jul 2020
Learning Abstract Models for Strategic Exploration and Fast Reward
  Transfer
Learning Abstract Models for Strategic Exploration and Fast Reward Transfer
E. Liu
Ramtin Keramati
Sudarshan Seshadri
Kelvin Guu
Panupong Pasupat
Emma Brunskill
Percy Liang
OffRL
27
5
0
12 Jul 2020
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
  Reinforcement Learning
SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep Reinforcement Learning
Kimin Lee
Michael Laskin
A. Srinivas
Pieter Abbeel
OffRL
25
199
0
09 Jul 2020
Task-Agnostic Exploration via Policy Gradient of a Non-Parametric State
  Entropy Estimate
Task-Agnostic Exploration via Policy Gradient of a Non-Parametric State Entropy Estimate
Mirco Mutti
Lorenzo Pratissoli
Marcello Restelli
11
19
0
09 Jul 2020
A Unifying Framework for Reinforcement Learning and Planning
A Unifying Framework for Reinforcement Learning and Planning
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
33
9
0
26 Jun 2020
Information Theoretic Regret Bounds for Online Nonlinear Control
Information Theoretic Regret Bounds for Online Nonlinear Control
Sham Kakade
A. Krishnamurthy
Kendall Lowrey
Motoya Ohnishi
Wen Sun
31
117
0
22 Jun 2020
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Learning with AMIGo: Adversarially Motivated Intrinsic Goals
Andres Campero
Roberta Raileanu
Heinrich Küttler
J. Tenenbaum
Tim Rocktaschel
Edward Grefenstette
38
125
0
22 Jun 2020
FLAMBE: Structural Complexity and Representation Learning of Low Rank
  MDPs
FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs
Alekh Agarwal
Sham Kakade
A. Krishnamurthy
Wen Sun
OffRL
41
223
0
18 Jun 2020
Automatic Curriculum Learning through Value Disagreement
Automatic Curriculum Learning through Value Disagreement
Yunzhi Zhang
Pieter Abbeel
Lerrel Pinto
35
103
0
17 Jun 2020
Non-local Policy Optimization via Diversity-regularized Collaborative
  Exploration
Non-local Policy Optimization via Diversity-regularized Collaborative Exploration
Zhenghao Peng
Hao Sun
Bolei Zhou
18
18
0
14 Jun 2020
Gaussian Gated Linear Networks
Gaussian Gated Linear Networks
David Budden
Adam H. Marblestone
Eren Sezener
Tor Lattimore
Greg Wayne
J. Veness
BDL
AI4CE
24
12
0
10 Jun 2020
Temporally-Extended ε-Greedy Exploration
Temporally-Extended ε-Greedy Exploration
Will Dabney
Georg Ostrovski
André Barreto
22
33
0
02 Jun 2020
Acme: A Research Framework for Distributed Reinforcement Learning
Acme: A Research Framework for Distributed Reinforcement Learning
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
...
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
65
225
0
01 Jun 2020
PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals
PlanGAN: Model-based Planning With Sparse Rewards and Multiple Goals
Henry Charlesworth
Giovanni Montana
OffRL
29
24
0
01 Jun 2020
LEAF: Latent Exploration Along the Frontier
LEAF: Latent Exploration Along the Frontier
Homanga Bharadhwaj
Animesh Garg
Florian Shkurti
29
1
0
21 May 2020
Novel Policy Seeking with Constrained Optimization
Novel Policy Seeking with Constrained Optimization
Hao Sun
Zhenghao Peng
Bo Dai
Jian Guo
Dahua Lin
Bolei Zhou
24
13
0
21 May 2020
Planning to Explore via Self-Supervised World Models
Planning to Explore via Self-Supervised World Models
Ramanan Sekar
Oleh Rybkin
Kostas Daniilidis
Pieter Abbeel
Danijar Hafner
Deepak Pathak
SSL
33
398
0
12 May 2020
First return, then explore
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
351
0
27 Apr 2020
Self-Paced Deep Reinforcement Learning
Self-Paced Deep Reinforcement Learning
Pascal Klink
Carlo DÉramo
Jan Peters
Joni Pajarinen
ODL
38
54
0
24 Apr 2020
Agent57: Outperforming the Atari Human Benchmark
Agent57: Outperforming the Atari Human Benchmark
Adria Puigdomenech Badia
Bilal Piot
Steven Kapturowski
Pablo Sprechmann
Alex Vitvitskyi
Daniel Guo
Charles Blundell
OffRL
29
510
0
30 Mar 2020
Adaptive Reward-Poisoning Attacks against Reinforcement Learning
Adaptive Reward-Poisoning Attacks against Reinforcement Learning
Xuezhou Zhang
Yuzhe Ma
Adish Singla
Xiaojin Zhu
AAML
29
124
0
27 Mar 2020
Enhanced POET: Open-Ended Reinforcement Learning through Unbounded
  Invention of Learning Challenges and their Solutions
Enhanced POET: Open-Ended Reinforcement Learning through Unbounded Invention of Learning Challenges and their Solutions
Rui Wang
Joel Lehman
Aditya Rawal
Jiale Zhi
Yulun Li
Jeff Clune
Kenneth O. Stanley
22
125
0
19 Mar 2020
Automatic Curriculum Learning For Deep RL: A Short Survey
Automatic Curriculum Learning For Deep RL: A Short Survey
Rémy Portelas
Cédric Colas
Lilian Weng
Katja Hofmann
Pierre-Yves Oudeyer
ODL
19
168
0
10 Mar 2020
Scaling MAP-Elites to Deep Neuroevolution
Scaling MAP-Elites to Deep Neuroevolution
Cédric Colas
Joost Huizinga
Vashisht Madhavan
Jeff Clune
33
86
0
03 Mar 2020
Reinforcement Learning through Active Inference
Reinforcement Learning through Active Inference
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
AI4CE
26
69
0
28 Feb 2020
Off-Policy Deep Reinforcement Learning with Analogous Disentangled
  Exploration
Off-Policy Deep Reinforcement Learning with Analogous Disentangled Exploration
Guy Van den Broeck
Yitao Liang
Mathias Niepert
OffRL
16
3
0
25 Feb 2020
Disentangling Controllable Object through Video Prediction Improves
  Visual Reinforcement Learning
Disentangling Controllable Object through Video Prediction Improves Visual Reinforcement Learning
Yuanyi Zhong
A. Schwing
Jian Peng
DRL
15
5
0
21 Feb 2020
An Exploration of Embodied Visual Exploration
An Exploration of Embodied Visual Exploration
Santhosh Kumar Ramakrishnan
Dinesh Jayaraman
Kristen Grauman
LM&Ro
32
98
0
07 Jan 2020
A Survey of Deep Learning Applications to Autonomous Vehicle Control
A Survey of Deep Learning Applications to Autonomous Vehicle Control
Sampo Kuutti
Richard Bowden
Yaochu Jin
P. Barber
Saber Fallah
36
506
0
23 Dec 2019
Optimism in Reinforcement Learning with Generalized Linear Function
  Approximation
Optimism in Reinforcement Learning with Generalized Linear Function Approximation
Yining Wang
Ruosong Wang
S. Du
A. Krishnamurthy
135
135
0
09 Dec 2019
Scaling active inference
Scaling active inference
Alexander Tschantz
Manuel Baltieri
A. Seth
Christopher L. Buckley
BDL
AI4CE
19
68
0
24 Nov 2019
Implicit Generative Modeling for Efficient Exploration
Implicit Generative Modeling for Efficient Exploration
Neale Ratzlaff
Qinxun Bai
Fuxin Li
Wenyuan Xu
22
12
0
19 Nov 2019
Kinematic State Abstraction and Provably Efficient Rich-Observation
  Reinforcement Learning
Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning
Dipendra Kumar Misra
Mikael Henaff
A. Krishnamurthy
John Langford
26
151
0
13 Nov 2019
Multi-Path Policy Optimization
Multi-Path Policy Optimization
L. Pan
Qingpeng Cai
Longbo Huang
18
2
0
11 Nov 2019
Explicit Explore-Exploit Algorithms in Continuous State Spaces
Explicit Explore-Exploit Algorithms in Continuous State Spaces
Mikael Henaff
OffRL
22
31
0
01 Nov 2019
Dealing with Sparse Rewards in Reinforcement Learning
Dealing with Sparse Rewards in Reinforcement Learning
J. Hare
21
77
0
21 Oct 2019
Influence-Based Multi-Agent Exploration
Influence-Based Multi-Agent Exploration
Tonghan Wang
Jianhao Wang
Yi Wu
Chongjie Zhang
24
137
0
12 Oct 2019
Receding Horizon Curiosity
Receding Horizon Curiosity
M. Schultheis
Boris Belousov
Hany Abdulsamad
Jan Peters
25
15
0
08 Oct 2019
Benchmarking Batch Deep Reinforcement Learning Algorithms
Benchmarking Batch Deep Reinforcement Learning Algorithms
Shih-Han Chou
Wen-Yen Chang
W. Hsu
Jianlong Fu
OffRL
15
181
0
03 Oct 2019
Emergent Tool Use From Multi-Agent Autocurricula
Emergent Tool Use From Multi-Agent Autocurricula
Bowen Baker
I. Kanitscheider
Todor Markov
Yi Wu
Glenn Powell
Bob McGrew
Igor Mordatch
LRM
37
646
0
17 Sep 2019
Interactive Fiction Games: A Colossal Adventure
Interactive Fiction Games: A Colossal Adventure
Matthew J. Hausknecht
Prithviraj Ammanabrolu
Marc-Alexandre Côté
Xingdi Yuan
LLMAG
LM&Ro
AI4CE
18
192
0
11 Sep 2019
A Review of Robot Learning for Manipulation: Challenges,
  Representations, and Algorithms
A Review of Robot Learning for Manipulation: Challenges, Representations, and Algorithms
Oliver Kroemer
S. Niekum
George Konidaris
36
356
0
06 Jul 2019
Growing Action Spaces
Growing Action Spaces
Gregory Farquhar
Laura Gustafson
Zeming Lin
Shimon Whiteson
Nicolas Usunier
Gabriel Synnaeve
14
38
0
28 Jun 2019
Optimistic Proximal Policy Optimization
Optimistic Proximal Policy Optimization
Takahisa Imagawa
Takuya Hiraoka
Yoshimasa Tsuruoka
15
4
0
25 Jun 2019
Learning-Driven Exploration for Reinforcement Learning
Learning-Driven Exploration for Reinforcement Learning
Muhammad Usama
D. Chang
23
10
0
17 Jun 2019
Fast Task Inference with Variational Intrinsic Successor Features
Fast Task Inference with Variational Intrinsic Successor Features
Steven Hansen
Will Dabney
André Barreto
T. Wiele
David Warde-Farley
Volodymyr Mnih
BDL
44
151
0
12 Jun 2019
Previous
1234567
Next