Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.00709
Cited By
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
2 June 2016
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization"
50 / 904 papers shown
Title
Learning Graph Augmentations to Learn Graph Representations
Kaveh Hassani
Amir Hosein Khas Ahmadi
110
21
0
24 Jan 2022
Toward Enhanced Robustness in Unsupervised Graph Representation Learning: A Graph Information Bottleneck Perspective
Jihong Wang
Minnan Luo
Jundong Li
Ziqi Liu
Jun Zhou
Qinghua Zheng
AAML
58
5
0
21 Jan 2022
Informative Pseudo-Labeling for Graph Neural Networks with Few Labels
Yayong Li
Jie Yin
Ling-Hao Chen
70
36
0
20 Jan 2022
On Sampling Collaborative Filtering Datasets
Noveen Sachdeva
Carole-Jean Wu
Julian McAuley
78
16
0
13 Jan 2022
Disentanglement and Generalization Under Correlation Shifts
Christina M. Funke
Paul Vicol
Kuan-Chieh Wang
Matthias Kümmerer
R. Zemel
Matthias Bethge
OOD
114
7
0
29 Dec 2021
Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization
Lorenzo Pacchiardi
Rilwan A. Adewoyin
P. Dueben
Ritabrata Dutta
AI4TS
116
26
0
15 Dec 2021
Tackling the Generative Learning Trilemma with Denoising Diffusion GANs
Zhisheng Xiao
Karsten Kreis
Arash Vahdat
DiffM
131
562
0
15 Dec 2021
CLIP-Lite: Information Efficient Visual Representation Learning with Language Supervision
A. Shrivastava
Ramprasaath R. Selvaraju
Nikhil Naik
Vicente Ordonez
VLM
CLIP
64
6
0
14 Dec 2021
Multi-Modal Mutual Information Maximization: A Novel Approach for Unsupervised Deep Cross-Modal Hashing
Tuan Hoang
Thanh-Toan Do
Tam V. Nguyen
Ngai-Man Cheung
74
26
0
13 Dec 2021
Computing Divergences between Discrete Decomposable Models
Loong Kuan Lee
Nico Piatkowski
Franccois Petitjean
Geoffrey I. Webb
27
2
0
08 Dec 2021
A Unified Framework for Multi-distribution Density Ratio Estimation
Lantao Yu
Yujia Jin
Stefano Ermon
44
4
0
07 Dec 2021
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
167
57
0
04 Dec 2021
The Representation Jensen-Rényi Divergence
J. Hoyos-Osorio
Oscar Skean
A. Brockmeier
L. S. Giraldo
47
2
0
02 Dec 2021
Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey
Benyamin Ghojogh
A. Ghodsi
Fakhri Karray
Mark Crowley
GAN
111
12
0
26 Nov 2021
Density Ratio Estimation via Infinitesimal Classification
Kristy Choi
Chenlin Meng
Yang Song
Stefano Ermon
83
42
0
22 Nov 2021
Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data
Liming Jiang
Bo Dai
Wayne Wu
Chen Change Loy
137
109
0
12 Nov 2021
A Reverse Jensen Inequality Result with Application to Mutual Information Estimation
Gerhard Wunder
Benedikt Groß
Rick Fritschek
Rafael F. Schaefer
48
10
0
12 Nov 2021
Training Generative Adversarial Networks with Adaptive Composite Gradient
Huiqing Qi
Fang Li
Shengli Tan
Xiangyun Zhang
GAN
53
4
0
10 Nov 2021
Speaker Generation
Daisy Stanton
Matt Shannon
Soroosh Mariooryad
RJ Skerry-Ryan
Eric Battenberg
Tom Bagby
David Kao
96
30
0
07 Nov 2021
Variational Inference with Holder Bounds
Junya Chen
Danni Lu
Zidi Xiu
Ke Bai
Lawrence Carin
Chenyang Tao
54
6
0
04 Nov 2021
Improving Model Compatibility of Generative Adversarial Networks by Boundary Calibration
Si-An Chen
Chun-Liang Li
Hsuan-Tien Lin
GAN
41
0
0
03 Nov 2021
Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training
Minguk Kang
Woohyeon Shim
Minsu Cho
Jaesik Park
GAN
100
112
0
01 Nov 2021
Pseudo-Spherical Contrastive Divergence
Lantao Yu
Jiaming Song
Yang Song
Stefano Ermon
58
7
0
01 Nov 2021
Estimating and Maximizing Mutual Information for Knowledge Distillation
A. Shrivastava
Yanjun Qi
Vicente Ordonez
56
6
0
29 Oct 2021
OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary
Nikolaos Dionelis
Mehrdad Yaghoobi
Sotirios A. Tsaftaris
OODD
64
6
0
28 Oct 2021
Training Wasserstein GANs without gradient penalties
Dohyun Kwon
Yeoneung Kim
Guido Montúfar
Insoon Yang
GAN
52
4
0
27 Oct 2021
Analyzing and Improving the Optimization Landscape of Noise-Contrastive Estimation
Bingbin Liu
Elan Rosenfeld
Pradeep Ravikumar
Andrej Risteski
57
13
0
21 Oct 2021
A Deep Generative Approach to Conditional Sampling
Xingyu Zhou
Yuling Jiao
Jin Liu
Jian Huang
75
43
0
19 Oct 2021
Estimating the Arc Length of the Optimal ROC Curve and Lower Bounding the Maximal AUC
Song Liu
36
0
0
18 Oct 2021
Heterogeneous Graph-Based Multimodal Brain Network Learning
Gen Shi
Yifan Zhu
Wenjin Liu
Quanming Yao
Xia Li
89
8
0
16 Oct 2021
Wasserstein Unsupervised Reinforcement Learning
Shuncheng He
Yuhang Jiang
Hongchang Zhang
Jianzhun Shao
Xiangyang Ji
OffRL
93
24
0
15 Oct 2021
Information Theoretic Structured Generative Modeling
Bo Hu
Shujian Yu
José C. Príncipe
SyDa
DRL
65
0
0
12 Oct 2021
F-Divergences and Cost Function Locality in Generative Modelling with Quantum Circuits
Chiara Leadbeater
Louis Sharrock
Brian Coyle
Marcello Benedetti
59
11
0
08 Oct 2021
Statistical Regeneration Guarantees of the Wasserstein Autoencoder with Latent Space Consistency
A. Chakrabarty
Swagatam Das
DRL
44
6
0
08 Oct 2021
Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization Domain
Dmitrii Ostrovskii
Babak Barazandeh
Meisam Razaviyayn
85
12
0
08 Oct 2021
Pre-training Molecular Graph Representation with 3D Geometry
Shengchao Liu
Hanchen Wang
Weiyang Liu
Joan Lasenby
Hongyu Guo
Jian Tang
201
324
0
07 Oct 2021
InfoSeg: Unsupervised Semantic Image Segmentation with Mutual Information Maximization
Robert Harb
Patrick Knobelreiter
SSL
78
22
0
07 Oct 2021
Score-based Generative Neural Networks for Large-Scale Optimal Transport
Max Daniels
Tyler Maunu
Paul Hand
OT
DiffM
78
72
0
07 Oct 2021
Reliable Estimation of KL Divergence using a Discriminator in Reproducing Kernel Hilbert Space
S. Ghimire
A. Masoomi
Jennifer Dy
57
8
0
29 Sep 2021
Reversible Gromov-Monge Sampler for Simulation-Based Inference
Y. Hur
Wenxuan Guo
Tengyuan Liang
94
9
0
28 Sep 2021
Variational Disentanglement for Domain Generalization
Yufei Wang
Haoliang Li
Hao Cheng
Bihan Wen
Lap-Pui Chau
Alex C. Kot
OOD
DRL
122
28
0
13 Sep 2021
Inferential Wasserstein Generative Adversarial Networks
Yao Chen
Qingyi Gao
Xiao Wang
GAN
186
23
0
13 Sep 2021
A Novel Intrinsic Measure of Data Separability
Shuyue Guan
Murray H. Loew
62
18
0
11 Sep 2021
An Empirical Study of Graph Contrastive Learning
Yanqiao Zhu
Yichen Xu
Qiang Liu
Shu Wu
97
173
0
02 Sep 2021
Dual Projection Generative Adversarial Networks for Conditional Image Generation
Ligong Han
Martin Renqiang Min
Anastasis Stathopoulos
Yu Tian
Ruijiang Gao
Asim Kadav
Dimitris N. Metaxas
GAN
87
21
0
20 Aug 2021
Unsupervised Image Generation with Infinite Generative Adversarial Networks
Hui Ying
He Wang
Tianjia Shao
Yin Yang
Kun Zhou
GAN
56
2
0
18 Aug 2021
Toward a `Standard Model' of Machine Learning
Zhiting Hu
Eric Xing
97
12
0
17 Aug 2021
M2IOSR: Maximal Mutual Information Open Set Recognition
Xin Sun
Henghui Ding
Fangqiu Yi
Guosheng Lin
K. Ling
81
17
0
05 Aug 2021
Limit Distribution Theory for the Smooth 1-Wasserstein Distance with Applications
Ritwik Sadhu
Ziv Goldfeld
Kengo Kato
79
9
0
28 Jul 2021
AASAE: Augmentation-Augmented Stochastic Autoencoders
William Falcon
A. Jha
Teddy Koker
Kyunghyun Cho
102
0
0
26 Jul 2021
Previous
1
2
3
...
5
6
7
...
17
18
19
Next