ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.00709
  4. Cited By
f-GAN: Training Generative Neural Samplers using Variational Divergence
  Minimization

f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

2 June 2016
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
    GAN
ArXiv (abs)PDFHTML

Papers citing "f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization"

50 / 904 papers shown
Title
Pseudo Contrastive Learning for Graph-based Semi-supervised Learning
Pseudo Contrastive Learning for Graph-based Semi-supervised Learning
Weigang Lu
Ziyu Guan
Wei Zhao
Yaming Yang
Yuanhai Lv
Lining Xing
Baosheng Yu
Dacheng Tao
118
7
0
19 Feb 2023
Redes Generativas Adversarias (GAN) Fundamentos Teóricos y
  Aplicaciones
Redes Generativas Adversarias (GAN) Fundamentos Teóricos y Aplicaciones
J. D. L. Torre
GAN
51
1
0
18 Feb 2023
Aligning Language Models with Preferences through f-divergence
  Minimization
Aligning Language Models with Preferences through f-divergence Minimization
Dongyoung Go
Tomasz Korbak
Germán Kruszewski
Jos Rozen
Nahyeon Ryu
Marc Dymetman
109
76
0
16 Feb 2023
Deep Orthogonal Hypersphere Compression for Anomaly Detection
Deep Orthogonal Hypersphere Compression for Anomaly Detection
Yunhe Zhang
Yan Sun
Jinyu Cai
Jicong Fan
94
10
0
13 Feb 2023
Feature Likelihood Divergence: Evaluating the Generalization of
  Generative Models Using Samples
Feature Likelihood Divergence: Evaluating the Generalization of Generative Models Using Samples
Marco Jiralerspong
A. Bose
I. Gemp
Chongli Qin
Yoram Bachrach
Gauthier Gidel
EGVM
105
8
0
09 Feb 2023
Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
  Maximization Network
Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information Maximization Network
Jinyu Cai
Yi Han
Wenzhong Guo
Jicong Fan
89
9
0
05 Feb 2023
Sample Complexity of Probability Divergences under Group Symmetry
Sample Complexity of Probability Divergences under Group Symmetry
Ziyu Chen
Markos A. Katsoulakis
Luc Rey-Bellet
Weixia Zhu
131
10
0
03 Feb 2023
Leveraging Contaminated Datasets to Learn Clean-Data Distribution with
  Purified Generative Adversarial Networks
Leveraging Contaminated Datasets to Learn Clean-Data Distribution with Purified Generative Adversarial Networks
Bowen Tian
Qinliang Su
Jianxing Yu
59
2
0
03 Feb 2023
MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein
  Gradient Flows
MonoFlow: Rethinking Divergence GANs via the Perspective of Wasserstein Gradient Flows
Mingxuan Yi
Zhanxing Zhu
Song Liu
GAN
97
14
0
02 Feb 2023
Training Normalizing Flows with the Precision-Recall Divergence
Training Normalizing Flows with the Precision-Recall Divergence
Alexandre Verine
Benjamin Négrevergne
Muni Sreenivas Pydi
Y. Chevaleyre
41
1
0
01 Feb 2023
Internally Rewarded Reinforcement Learning
Internally Rewarded Reinforcement Learning
Mengdi Li
Xufeng Zhao
Jae Hee Lee
C. Weber
S. Wermter
64
11
0
01 Feb 2023
Generative Adversarial Symmetry Discovery
Generative Adversarial Symmetry Discovery
Jianke Yang
Robin Walters
Nima Dehmamy
Rose Yu
GAN
111
29
0
01 Feb 2023
Free Lunch for Domain Adversarial Training: Environment Label Smoothing
Free Lunch for Domain Adversarial Training: Environment Label Smoothing
Yifan Zhang
Xue Wang
Jian Liang
Zhang Zhang
Liangsheng Wang
Rong Jin
Tien-Ping Tan
143
43
0
01 Feb 2023
Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for
  Adversarial Nets
Mind the (optimality) Gap: A Gap-Aware Learning Rate Scheduler for Adversarial Nets
Hussein Hazimeh
Natalia Ponomareva
GAN
61
2
0
31 Jan 2023
SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear
  Layer
SAN: Inducing Metrizability of GAN with Discriminative Normalized Linear Layer
Yuhta Takida
Masaaki Imaizumi
Takashi Shibuya
Chieh-Hsin Lai
Toshimitsu Uesaka
Naoki Murata
Yuki Mitsufuji
GAN
111
13
0
30 Jan 2023
Generalized Munchausen Reinforcement Learning using Tsallis KL
  Divergence
Generalized Munchausen Reinforcement Learning using Tsallis KL Divergence
Lingwei Zhu
Zheng Chen
Takamitsu Matsubara
Martha White
94
1
0
27 Jan 2023
Improving Statistical Fidelity for Neural Image Compression with
  Implicit Local Likelihood Models
Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models
Matthew Muckley
Alaaeldin El-Nouby
Karen Ullrich
Hervé Jégou
Jakob Verbeek
132
55
0
26 Jan 2023
Optimizing the Noise in Self-Supervised Learning: from Importance
  Sampling to Noise-Contrastive Estimation
Optimizing the Noise in Self-Supervised Learning: from Importance Sampling to Noise-Contrastive Estimation
O. Chehab
Alexandre Gramfort
Aapo Hyvarinen
SSL
88
3
0
23 Jan 2023
DiME: Maximizing Mutual Information by a Difference of Matrix-Based
  Entropies
DiME: Maximizing Mutual Information by a Difference of Matrix-Based Entropies
Oscar Skean
J. Hoyos-Osorio
A. Brockmeier
L. S. Giraldo
89
13
0
19 Jan 2023
Generative Adversarial Networks to infer velocity components in rotating
  turbulent flows
Generative Adversarial Networks to infer velocity components in rotating turbulent flows
Tianyi Li
M. Buzzicotti
Luca Biferale
F. Bonaccorso
45
11
0
18 Jan 2023
Effective Dynamics of Generative Adversarial Networks
Effective Dynamics of Generative Adversarial Networks
S. Durr
Youssef Mroueh
Yuhai Tu
Shenshen Wang
GAN
54
5
0
08 Dec 2022
UQ-ARMED: Uncertainty quantification of adversarially-regularized mixed
  effects deep learning for clustered non-iid data
UQ-ARMED: Uncertainty quantification of adversarially-regularized mixed effects deep learning for clustered non-iid data
A. Treacher
K. Nguyen
Dylan A. Owens
D. Heitjan
A. Montillo
FedML
26
0
0
29 Nov 2022
Refining Generative Process with Discriminator Guidance in Score-based
  Diffusion Models
Refining Generative Process with Discriminator Guidance in Score-based Diffusion Models
Dongjun Kim
Yeongmin Kim
Se Jung Kwon
Wanmo Kang
Il-Chul Moon
DiffM
120
89
0
28 Nov 2022
DigGAN: Discriminator gradIent Gap Regularization for GAN Training with
  Limited Data
DigGAN: Discriminator gradIent Gap Regularization for GAN Training with Limited Data
Tiantian Fang
Ruoyu Sun
Alex Schwing
GAN
58
17
0
27 Nov 2022
A Two-Stage Deep Representation Learning-Based Speech Enhancement Method
  Using Variational Autoencoder and Adversarial Training
A Two-Stage Deep Representation Learning-Based Speech Enhancement Method Using Variational Autoencoder and Adversarial Training
Yang Xiang
Jesper Lisby Højvang
M. Rasmussen
M. G. Christensen
DRL
76
6
0
16 Nov 2022
Generalized Balancing Weights via Deep Neural Networks
Generalized Balancing Weights via Deep Neural Networks
Yoshiaki Kitazawa
BDLCML
79
1
0
14 Nov 2022
Build generally reusable agent-environment interaction models
Build generally reusable agent-environment interaction models
Jun Jin
Hongming Zhang
Jun Luo
51
0
0
13 Nov 2022
Lipschitz-regularized gradient flows and generative particle algorithms
  for high-dimensional scarce data
Lipschitz-regularized gradient flows and generative particle algorithms for high-dimensional scarce data
Hyemin Gu
Panagiota Birmpa
Yannis Pantazis
Luc Rey-Bellet
Markos A. Katsoulakis
103
2
0
31 Oct 2022
Mutual Information Regularized Offline Reinforcement Learning
Mutual Information Regularized Offline Reinforcement Learning
Xiao Ma
Bingyi Kang
Zhongwen Xu
Min Lin
Shuicheng Yan
OffRL
98
8
0
14 Oct 2022
FreGAN: Exploiting Frequency Components for Training GANs under Limited
  Data
FreGAN: Exploiting Frequency Components for Training GANs under Limited Data
Mengping Yang
Zhe Wang
Ziqiu Chi
Yanbing Zhang
71
33
0
11 Oct 2022
Contrastive Learning Can Find An Optimal Basis For Approximately
  View-Invariant Functions
Contrastive Learning Can Find An Optimal Basis For Approximately View-Invariant Functions
Daniel D. Johnson
Ayoub El Hanchi
Chris J. Maddison
SSL
98
24
0
04 Oct 2022
Revealing Unobservables by Deep Learning: Generative Element Extraction
  Networks (GEEN)
Revealing Unobservables by Deep Learning: Generative Element Extraction Networks (GEEN)
Yingyao Hu
Yang Liu
Jiaxiong Yao
DRL
29
1
0
04 Oct 2022
Understanding Hindsight Goal Relabeling from a Divergence Minimization
  Perspective
Understanding Hindsight Goal Relabeling from a Divergence Minimization Perspective
Lunjun Zhang
Bradly C. Stadie
54
1
0
26 Sep 2022
Variational Representations of Annealing Paths: Bregman Information
  under Monotonic Embedding
Variational Representations of Annealing Paths: Bregman Information under Monotonic Embedding
Rob Brekelmans
Frank Nielsen
51
1
0
15 Sep 2022
Semi-supervised Batch Learning From Logged Data
Semi-supervised Batch Learning From Logged Data
Gholamali Aminian
Armin Behnamnia
R. Vega
Laura Toni
Chengchun Shi
Hamid R. Rabiee
Omar Rivasplata
Miguel R. D. Rodrigues
OffRL
75
1
0
15 Sep 2022
Asymptotic Statistical Analysis of $f$-divergence GAN
Asymptotic Statistical Analysis of fff-divergence GAN
Xinwei Shen
Kani Chen
Tong Zhang
62
2
0
14 Sep 2022
GRASP: A Goodness-of-Fit Test for Classification Learning
GRASP: A Goodness-of-Fit Test for Classification Learning
Adel Javanmard
M. Mehrabi
85
0
0
05 Sep 2022
Dynamics of Fourier Modes in Torus Generative Adversarial Networks
Dynamics of Fourier Modes in Torus Generative Adversarial Networks
Ángel González-Prieto
Alberto Mozo
Edgar Talavera
Sandra Gómez Canaval
GAN
63
7
0
05 Sep 2022
Geometry of EM and related iterative algorithms
Geometry of EM and related iterative algorithms
H. Hino
S. Akaho
Noboru Murata
73
5
0
03 Sep 2022
Models and Benchmarks for Representation Learning of Partially Observed
  Subgraphs
Models and Benchmarks for Representation Learning of Partially Observed Subgraphs
Dongkwan Kim
Jiho Jin
Jaimeen Ahn
Alice Oh
130
3
0
01 Sep 2022
Domain-Specific Risk Minimization for Out-of-Distribution Generalization
Domain-Specific Risk Minimization for Out-of-Distribution Generalization
Yi-Fan Zhang
Jindong Wang
Jian Liang
Zhang Zhang
Baosheng Yu
Liangdao Wang
Dacheng Tao
Xingxu Xie
OOD
135
18
0
18 Aug 2022
Causal Imitation Learning with Unobserved Confounders
Causal Imitation Learning with Unobserved Confounders
Junzhe Zhang
D. Kumor
Elias Bareinboim
CML
86
76
0
12 Aug 2022
A Survey of Learning on Small Data: Generalization, Optimization, and
  Challenge
A Survey of Learning on Small Data: Generalization, Optimization, and Challenge
Xiaofeng Cao
Weixin Bu
Sheng-Jun Huang
Minling Zhang
Ivor W. Tsang
Yew-Soon Ong
James T. Kwok
99
1
0
29 Jul 2022
Information Processing Equalities and the Information-Risk Bridge
Information Processing Equalities and the Information-Risk Bridge
Robert C. Williamson
Zac Cranko
72
5
0
25 Jul 2022
Deep Sufficient Representation Learning via Mutual Information
Deep Sufficient Representation Learning via Mutual Information
Siming Zheng
Yuanyuan Lin
Jian Huang
SSLDRL
79
0
0
21 Jul 2022
Beyond Transmitting Bits: Context, Semantics, and Task-Oriented
  Communications
Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications
Deniz Gunduz
Zhijin Qin
Iñaki Estella Aguerri
Harpreet S. Dhillon
Zhaohui Yang
Aylin Yener
Kai‐Kit Wong
C. Chae
108
461
0
19 Jul 2022
Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among
  Complexity, Leakage, and Utility
Bottlenecks CLUB: Unifying Information-Theoretic Trade-offs Among Complexity, Leakage, and Utility
Behrooz Razeghi
Flavio du Pin Calmon
Deniz Gunduz
Svyatoslav Voloshynovskiy
58
16
0
11 Jul 2022
Neural Stein critics with staged $L^2$-regularization
Neural Stein critics with staged L2L^2L2-regularization
Matthew Repasky
Xiuyuan Cheng
Yao Xie
61
3
0
07 Jul 2022
Approximate Data Deletion in Generative Models
Approximate Data Deletion in Generative Models
Zhifeng Kong
Scott Alfeld
MU
63
4
0
29 Jun 2022
Data Redaction from Pre-trained GANs
Data Redaction from Pre-trained GANs
Zhifeng Kong
Kamalika Chaudhuri
152
16
0
29 Jun 2022
Previous
12345...171819
Next