Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.00709
Cited By
f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
2 June 2016
Sebastian Nowozin
Botond Cseke
Ryota Tomioka
GAN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization"
50 / 904 papers shown
Title
Generative Adversarial Networks (GANs): An Overview of Theoretical Model, Evaluation Metrics, and Recent Developments
Pegah Salehi
A. Chalechale
M. Taghizadeh
EGVM
45
40
0
27 May 2020
Image Restoration from Parametric Transformations using Generative Models
Kalliopi Basioti
G. Moustakides
DiffM
GAN
80
5
0
27 May 2020
TIPRDC: Task-Independent Privacy-Respecting Data Crowdsourcing Framework for Deep Learning with Anonymized Intermediate Representations
Ang Li
Yixiao Duan
Huanrui Yang
Yiran Chen
Jianlei Yang
99
50
0
23 May 2020
Novel Human-Object Interaction Detection via Adversarial Domain Generalization
Yuhang Song
Wenbo Li
Lei Zhang
Jianwei Yang
Emre Kıcıman
Hamid Palangi
Jianfeng Gao
C.-C. Jay Kuo
Pengchuan Zhang
58
5
0
22 May 2020
Sequential Recommendation with Self-Attentive Multi-Adversarial Network
Ruiyang Ren
Zhaoyang Liu
Yaliang Li
Wayne Xin Zhao
Hongya Wang
Bolin Ding
Ji-Rong Wen
GAN
50
108
0
21 May 2020
Regularization Methods for Generative Adversarial Networks: An Overview of Recent Studies
Minhyeok Lee
Junhee Seok
GAN
88
26
0
19 May 2020
C-MI-GAN : Estimation of Conditional Mutual Information using MinMax formulation
A. Mondal
A. Bhattacharya
Sudipto Mukherjee
A. Prathosh
Sreeram Kannan
Himanshu Asnani
87
15
0
17 May 2020
On loss functions and regret bounds for multi-category classification
Z. Tan
Xinwei Zhang
39
1
0
17 May 2020
Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems
Sergey Levine
Aviral Kumar
George Tucker
Justin Fu
OffRL
GP
586
2,052
0
04 May 2020
Generative Adversarial Networks (GANs Survey): Challenges, Solutions, and Future Directions
Divya Saxena
Jiannong Cao
AAML
AI4CE
158
308
0
30 Apr 2020
Robust Generative Adversarial Network
Shufei Zhang
Zhuang Qian
Kaizhu Huang
Jimin Xiao
Yuan He
64
9
0
28 Apr 2020
Stabilizing Training of Generative Adversarial Nets via Langevin Stein Variational Gradient Descent
Dong Wang
Xiaoqian Qin
F. Song
Li Cheng
GAN
109
22
0
22 Apr 2020
Decomposed Adversarial Learned Inference
Alexander Hanbo Li
Yaqing Wang
Changyou Chen
Jing Gao
DRL
45
4
0
21 Apr 2020
Energy-Based Imitation Learning
Minghuan Liu
Tairan He
Minkai Xu
Weinan Zhang
118
48
0
20 Apr 2020
Towards GANs' Approximation Ability
Xuejiao Liu
Yao Xu
Xueshuang Xiang
28
1
0
10 Apr 2020
Feature Quantization Improves GAN Training
Yang Zhao
Chunyuan Li
Ping Yu
Jianfeng Gao
Changyou Chen
MQ
82
47
0
05 Apr 2020
Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling by Exploring Energy of the Discriminator
Yuxuan Song
Qiwei Ye
Minkai Xu
Tie-Yan Liu
67
8
0
05 Apr 2020
Learning Sparse Rewarded Tasks from Sub-Optimal Demonstrations
Zhuangdi Zhu
Kaixiang Lin
Bo Dai
Jiayu Zhou
OffRL
54
14
0
01 Apr 2020
MIM-Based GAN: Information Metric to Amplify Small Probability Events Importance in Generative Adversarial Networks
R. She
Pingyi Fan
GAN
41
0
0
25 Mar 2020
Unified Multi-Domain Learning and Data Imputation using Adversarial Autoencoder
André Mendes
Julian Togelius
L. Coelho
45
2
0
15 Mar 2020
Mutual Information Maximization for Effective Lip Reading
Xingyuan Zhao
Shuang Yang
Shiguang Shan
Xilin Chen
74
59
0
13 Mar 2020
Generalized Energy Based Models
Michael Arbel
Liang Zhou
Arthur Gretton
DRL
184
81
0
10 Mar 2020
Training Deep Energy-Based Models with f-Divergence Minimization
Lantao Yu
Yang Song
Jiaming Song
Stefano Ermon
241
44
0
06 Mar 2020
GANs with Conditional Independence Graphs: On Subadditivity of Probability Divergences
Mucong Ding
C. Daskalakis
Soheil Feizi
GAN
45
2
0
02 Mar 2020
A U-Net Based Discriminator for Generative Adversarial Networks
Edgar Schönfeld
Bernt Schiele
Anna Khoreva
GAN
122
297
0
28 Feb 2020
DP-MERF: Differentially Private Mean Embeddings with Random Features for Practical Privacy-Preserving Data Generation
Frederik Harder
Kamil Adamczewski
Mijung Park
SyDa
154
101
0
26 Feb 2020
Analysis of Discriminator in RKHS Function Space for Kullback-Leibler Divergence Estimation
S. Ghimire
P. Gyawali
Linwei Wang
30
0
0
25 Feb 2020
An end-to-end approach for the verification problem: learning the right distance
João Monteiro
Isabela Albuquerque
Md. Jahangir Alam
R. Devon Hjelm
T. Falk
59
6
0
21 Feb 2020
Bidirectional Generative Modeling Using Adversarial Gradient Estimation
Xinwei Shen
Tong Zhang
Kani Chen
GAN
55
9
0
21 Feb 2020
GANs May Have No Nash Equilibria
Farzan Farnia
Asuman Ozdaglar
GAN
80
43
0
21 Feb 2020
GenDICE: Generalized Offline Estimation of Stationary Values
Ruiyi Zhang
Bo Dai
Lihong Li
Dale Schuurmans
OffRL
201
174
0
21 Feb 2020
A Novel Framework for Selection of GANs for an Application
Tanya Motwani
Manojkumar Somabhai Parmar
83
8
0
20 Feb 2020
The Benefits of Pairwise Discriminators for Adversarial Training
Shangyuan Tong
T. Garipov
Tommi Jaakkola
23
0
0
20 Feb 2020
Bayesian Experimental Design for Implicit Models by Mutual Information Neural Estimation
Steven Kleinegesse
Michael U. Gutmann
89
66
0
19 Feb 2020
A unified framework for 21cm tomography sample generation and parameter inference with Progressively Growing GANs
Florian List
G. Lewis
53
14
0
19 Feb 2020
Posterior Ratio Estimation of Latent Variables
Song Liu
Yulong Zhang
Mingxuan Yi
Mladen Kolar
73
2
0
15 Feb 2020
Top-k Training of GANs: Improving GAN Performance by Throwing Away Bad Samples
Samarth Sinha
Zhengli Zhao
Anirudh Goyal
Colin Raffel
Augustus Odena
88
7
0
14 Feb 2020
Smoothness and Stability in GANs
Casey Chu
Kentaro Minami
Kenji Fukumizu
GAN
67
56
0
11 Feb 2020
On Contrastive Learning for Likelihood-free Inference
Conor Durkan
Iain Murray
George Papamakarios
BDL
249
124
0
10 Feb 2020
Kullback-Leibler Divergence-Based Out-of-Distribution Detection with Flow-Based Generative Models
Yufeng Zhang
Jia Pan
Wanwei Liu
Zhenbang Chen
Jing Wang
Zhiming Liu
KenLi Li
H. Wei
OODD
DRL
100
2
0
09 Feb 2020
Learning Implicit Generative Models with Theoretical Guarantees
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
66
7
0
07 Feb 2020
Graph Representation Learning via Graphical Mutual Information Maximization
Zhen Peng
Wenbing Huang
Minnan Luo
Q. Zheng
Yu Rong
Tingyang Xu
Junzhou Huang
SSL
167
587
0
04 Feb 2020
Limit Distribution for Smooth Total Variation and
χ
2
χ^2
χ
2
-Divergence in High Dimensions
Ziv Goldfeld
Kengo Kato
80
7
0
03 Feb 2020
Designing GANs: A Likelihood Ratio Approach
Kalliopi Basioti
G. Moustakides
GAN
35
2
0
03 Feb 2020
GradientDICE: Rethinking Generalized Offline Estimation of Stationary Values
Shangtong Zhang
Bo Liu
Shimon Whiteson
OffRL
135
103
0
29 Jan 2020
Expected Information Maximization: Using the I-Projection for Mixture Density Estimation
P. Becker
Oleg Arenz
Gerhard Neumann
52
16
0
23 Jan 2020
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects
Fredrik D. Johansson
Uri Shalit
Nathan Kallus
David Sontag
CML
OOD
128
100
0
21 Jan 2020
A Review on Generative Adversarial Networks: Algorithms, Theory, and Applications
Jie Gui
Zhenan Sun
Yonggang Wen
Dacheng Tao
Jieping Ye
EGVM
109
847
0
20 Jan 2020
microbatchGAN: Stimulating Diversity with Multi-Adversarial Discrimination
Gonçalo Mordido
Haojin Yang
Christoph Meinel
54
22
0
10 Jan 2020
Guess First to Enable Better Compression and Adversarial Robustness
Sicheng Zhu
Bang An
Shiyu Niu
AAML
42
0
0
10 Jan 2020
Previous
1
2
3
...
10
11
12
...
17
18
19
Next