Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07110
Cited By
Deep Learning without Poor Local Minima
23 May 2016
Kenji Kawaguchi
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning without Poor Local Minima"
50 / 207 papers shown
Title
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
30
93
0
10 Nov 2021
Mode connectivity in the loss landscape of parameterized quantum circuits
Kathleen E. Hamilton
E. Lynn
R. Pooser
32
3
0
09 Nov 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
35
8
0
11 Oct 2021
Towards Demystifying Representation Learning with Non-contrastive Self-supervision
Xiang Wang
Xinlei Chen
S. Du
Yuandong Tian
SSL
21
26
0
11 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
43
11
0
06 Oct 2021
Exponentially Many Local Minima in Quantum Neural Networks
Xuchen You
Xiaodi Wu
72
52
0
06 Oct 2021
Perturbated Gradients Updating within Unit Space for Deep Learning
Ching-Hsun Tseng
Liu Cheng
Shin-Jye Lee
Xiaojun Zeng
45
5
0
01 Oct 2021
Constants of Motion: The Antidote to Chaos in Optimization and Game Dynamics
Georgios Piliouras
Xiao Wang
39
0
0
08 Sep 2021
Impact of GPU uncertainty on the training of predictive deep neural networks
Maciej Pietrowski
A. Gajda
Takuto Yamamoto
Taisuke Kobayashi
Lana Sinapayen
Eiji Watanabe
BDL
19
0
0
03 Sep 2021
The loss landscape of deep linear neural networks: a second-order analysis
El Mehdi Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
26
9
0
28 Jul 2021
Can we globally optimize cross-validation loss? Quasiconvexity in ridge regression
William T. Stephenson
Zachary Frangella
Madeleine Udell
Tamara Broderick
24
12
0
19 Jul 2021
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
56
36
0
06 Jul 2021
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity
Shiwei Liu
Tianlong Chen
Zahra Atashgahi
Xiaohan Chen
Ghada Sokar
Elena Mocanu
Mykola Pechenizkiy
Zhangyang Wang
Decebal Constantin Mocanu
OOD
31
49
0
28 Jun 2021
AutoLRS: Automatic Learning-Rate Schedule by Bayesian Optimization on the Fly
Yuchen Jin
Dinesh Manocha
Liangyu Zhao
Yibo Zhu
Chuanxiong Guo
Marco Canini
Arvind Krishnamurthy
37
18
0
22 May 2021
Structured Ensembles: an Approach to Reduce the Memory Footprint of Ensemble Methods
Jary Pomponi
Simone Scardapane
A. Uncini
UQCV
49
7
0
06 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
40
196
0
06 May 2021
Landscape analysis for shallow neural networks: complete classification of critical points for affine target functions
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
24
10
0
19 Mar 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
103
115
0
28 Feb 2021
Noisy Gradient Descent Converges to Flat Minima for Nonconvex Matrix Factorization
Tianyi Liu
Yan Li
S. Wei
Enlu Zhou
T. Zhao
21
13
0
24 Feb 2021
Understanding self-supervised Learning Dynamics without Contrastive Pairs
Yuandong Tian
Xinlei Chen
Surya Ganguli
SSL
138
281
0
12 Feb 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
Rong Jin
41
3
0
12 Jan 2021
Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
FedML
60
356
0
17 Dec 2020
Neural Mechanics: Symmetry and Broken Conservation Laws in Deep Learning Dynamics
D. Kunin
Javier Sagastuy-Breña
Surya Ganguli
Daniel L. K. Yamins
Hidenori Tanaka
107
77
0
08 Dec 2020
A Deeper Look at the Hessian Eigenspectrum of Deep Neural Networks and its Applications to Regularization
Adepu Ravi Sankar
Yash Khasbage
Rahul Vigneswaran
V. Balasubramanian
25
42
0
07 Dec 2020
Learning Graph Neural Networks with Approximate Gradient Descent
Qunwei Li
Shaofeng Zou
Leon Wenliang Zhong
GNN
32
1
0
07 Dec 2020
Convergence Proof for Actor-Critic Methods Applied to PPO and RUDDER
Markus Holzleitner
Lukas Gruber
Jose A. Arjona-Medina
Johannes Brandstetter
Sepp Hochreiter
33
38
0
02 Dec 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
24
133
0
22 Sep 2020
It's Hard for Neural Networks To Learn the Game of Life
Jacob Mitchell Springer
Garrett Kenyon
27
21
0
03 Sep 2020
Rethinking CNN Models for Audio Classification
Kamalesh Palanisamy
Dipika Singhania
Angela Yao
SSL
33
144
0
22 Jul 2020
Sparse Linear Networks with a Fixed Butterfly Structure: Theory and Practice
Nir Ailon
Omer Leibovitch
Vineet Nair
15
14
0
17 Jul 2020
Quantitative Propagation of Chaos for SGD in Wide Neural Networks
Valentin De Bortoli
Alain Durmus
Xavier Fontaine
Umut Simsekli
32
25
0
13 Jul 2020
A Generative Neural Network Framework for Automated Software Testing
Leonid Joffe
David J. Clark
30
2
0
29 Jun 2020
The Depth-to-Width Interplay in Self-Attention
Yoav Levine
Noam Wies
Or Sharir
Hofit Bata
Amnon Shashua
30
45
0
22 Jun 2020
SGD for Structured Nonconvex Functions: Learning Rates, Minibatching and Interpolation
Robert Mansel Gower
Othmane Sebbouh
Nicolas Loizou
25
74
0
18 Jun 2020
Learning Rates as a Function of Batch Size: A Random Matrix Theory Approach to Neural Network Training
Diego Granziol
S. Zohren
Stephen J. Roberts
ODL
37
49
0
16 Jun 2020
On the Loss Landscape of Adversarial Training: Identifying Challenges and How to Overcome Them
Chen Liu
Mathieu Salzmann
Tao R. Lin
Ryota Tomioka
Sabine Süsstrunk
AAML
24
81
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
Non-convergence of stochastic gradient descent in the training of deep neural networks
Patrick Cheridito
Arnulf Jentzen
Florian Rossmannek
14
37
0
12 Jun 2020
Feature Purification: How Adversarial Training Performs Robust Deep Learning
Zeyuan Allen-Zhu
Yuanzhi Li
MLT
AAML
39
147
0
20 May 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
29
115
0
18 May 2020
Dynamic Sparse Training: Find Efficient Sparse Network From Scratch With Trainable Masked Layers
Junjie Liu
Zhe Xu
Runbin Shi
R. Cheung
Hayden Kwok-Hay So
17
119
0
14 May 2020
Orthogonal Over-Parameterized Training
Weiyang Liu
Rongmei Lin
Zhen Liu
James M. Rehg
Liam Paull
Li Xiong
Le Song
Adrian Weller
32
41
0
09 Apr 2020
The Landscape of Matrix Factorization Revisited
Hossein Valavi
Sulin Liu
Peter J. Ramadge
17
5
0
27 Feb 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
32
483
0
17 Feb 2020
FEA-Net: A Physics-guided Data-driven Model for Efficient Mechanical Response Prediction
Houpu Yao
Yi Gao
Yongming Liu
AI4CE
61
66
0
31 Jan 2020
Thresholds of descending algorithms in inference problems
Stefano Sarao Mannelli
Lenka Zdeborova
AI4CE
24
4
0
02 Jan 2020
Revisiting Landscape Analysis in Deep Neural Networks: Eliminating Decreasing Paths to Infinity
Shiyu Liang
Ruoyu Sun
R. Srikant
37
19
0
31 Dec 2019
The Usual Suspects? Reassessing Blame for VAE Posterior Collapse
Bin Dai
Ziyu Wang
David Wipf
DRL
24
75
0
23 Dec 2019
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
27
168
0
19 Dec 2019
Information-Theoretic Local Minima Characterization and Regularization
Zhiwei Jia
Hao Su
27
19
0
19 Nov 2019
Previous
1
2
3
4
5
Next