Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07110
Cited By
Deep Learning without Poor Local Minima
23 May 2016
Kenji Kawaguchi
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Learning without Poor Local Minima"
50 / 195 papers shown
Title
Uncovering Critical Sets of Deep Neural Networks via Sample-Independent Critical Lifting
Leyang Zhang
Yaoyu Zhang
Tao Luo
BDL
2
0
0
19 May 2025
System Identification and Control Using Lyapunov-Based Deep Neural Networks without Persistent Excitation: A Concurrent Learning Approach
Rebecca G. Hart
Omkar Sudhir Patil
Zachary I. Bell
Warren E. Dixon
14
0
0
15 May 2025
Stacking as Accelerated Gradient Descent
Naman Agarwal
Pranjal Awasthi
Satyen Kale
Eric Zhao
ODL
73
2
0
20 Feb 2025
Effects of Random Edge-Dropping on Over-Squashing in Graph Neural Networks
Jasraj Singh
Keyue Jiang
Brooks Paige
Laura Toni
70
1
0
11 Feb 2025
Geometry and Optimization of Shallow Polynomial Networks
Yossi Arjevani
Joan Bruna
Joe Kileel
Elzbieta Polak
Matthew Trager
36
1
0
10 Jan 2025
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
61
1
0
10 Jan 2025
AdaRankGrad: Adaptive Gradient-Rank and Moments for Memory-Efficient LLMs Training and Fine-Tuning
Yehonathan Refael
Jonathan Svirsky
Boris Shustin
Wasim Huleihel
Ofir Lindenbaum
47
3
0
31 Dec 2024
Input Space Mode Connectivity in Deep Neural Networks
Jakub Vrabel
Ori Shem-Ur
Yaron Oz
David Krueger
58
1
0
09 Sep 2024
Analysis of the rate of convergence of an over-parametrized convolutional neural network image classifier learned by gradient descent
Michael Kohler
A. Krzyżak
Benjamin Walter
36
1
0
13 May 2024
Merging Text Transformer Models from Different Initializations
Neha Verma
Maha Elbayad
MoMe
61
7
0
01 Mar 2024
Loss Landscape of Shallow ReLU-like Neural Networks: Stationary Points, Saddle Escape, and Network Embedding
Zhengqing Wu
Berfin Simsek
Francois Ged
ODL
48
0
0
08 Feb 2024
Critical Influence of Overparameterization on Sharpness-aware Minimization
Sungbin Shin
Dongyeop Lee
Maksym Andriushchenko
Namhoon Lee
AAML
47
1
0
29 Nov 2023
Provably Accelerating Ill-Conditioned Low-rank Estimation via Scaled Gradient Descent, Even with Overparameterization
Cong Ma
Xingyu Xu
Tian Tong
Yuejie Chi
18
9
0
09 Oct 2023
Sharpness-Aware Graph Collaborative Filtering
Huiyuan Chen
Chin-Chia Michael Yeh
Yujie Fan
Yan Zheng
Junpeng Wang
Vivian Lai
Mahashweta Das
Hao Yang
36
5
0
18 Jul 2023
Snapshot Spectral Clustering -- a costless approach to deep clustering ensembles generation
Adam Piróg
Halina Kwasnicka
35
1
0
17 Jul 2023
Function Space and Critical Points of Linear Convolutional Networks
Kathlén Kohn
Guido Montúfar
Vahid Shahverdi
Matthew Trager
26
11
0
12 Apr 2023
Saddle-to-Saddle Dynamics in Diagonal Linear Networks
Scott Pesme
Nicolas Flammarion
33
35
0
02 Apr 2023
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
33
3
0
06 Mar 2023
On a continuous time model of gradient descent dynamics and instability in deep learning
Mihaela Rosca
Yan Wu
Chongli Qin
Benoit Dherin
20
7
0
03 Feb 2023
Read the Signs: Towards Invariance to Gradient Descent's Hyperparameter Initialization
Davood Wadi
M. Fredette
S. Sénécal
ODL
AI4CE
8
0
0
24 Jan 2023
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
32
45
0
15 Nov 2022
A New Perspective for Understanding Generalization Gap of Deep Neural Networks Trained with Large Batch Sizes
O. Oyedotun
Konstantinos Papadopoulos
Djamila Aouada
AI4CE
32
11
0
21 Oct 2022
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
29
10
0
21 Oct 2022
TiDAL: Learning Training Dynamics for Active Learning
Seong Min Kye
Kwanghee Choi
Hyeongmin Byun
Buru Chang
34
13
0
13 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
35
7
0
04 Oct 2022
Analysis of the rate of convergence of an over-parametrized deep neural network estimate learned by gradient descent
Michael Kohler
A. Krzyżak
32
10
0
04 Oct 2022
What shapes the loss landscape of self-supervised learning?
Liu Ziyin
Ekdeep Singh Lubana
Masakuni Ueda
Hidenori Tanaka
52
20
0
02 Oct 2022
Behind the Scenes of Gradient Descent: A Trajectory Analysis via Basis Function Decomposition
Jianhao Ma
Li-Zhen Guo
S. Fattahi
38
4
0
01 Oct 2022
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
Niladri S. Chatterji
Philip M. Long
23
8
0
19 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
255
318
0
11 Sep 2022
Blessing of Nonconvexity in Deep Linear Models: Depth Flattens the Optimization Landscape Around the True Solution
Jianhao Ma
S. Fattahi
44
5
0
15 Jul 2022
Neural Collapse: A Review on Modelling Principles and Generalization
Vignesh Kothapalli
30
74
0
08 Jun 2022
CoNSoLe: Convex Neural Symbolic Learning
Haoran Li
Yang Weng
Hanghang Tong
27
9
0
01 Jun 2022
Star algorithm for NN ensembling
Sergey Zinchenko
Dmitry Lishudi
FedML
11
0
0
01 Jun 2022
Non-convex online learning via algorithmic equivalence
Udaya Ghai
Zhou Lu
Elad Hazan
14
8
0
30 May 2022
Overparameterization Improves StyleGAN Inversion
Yohan Poirier-Ginter
Alexandre Lessard
Ryan Smith
Jean-François Lalonde
48
4
0
12 May 2022
Statistical Guarantees for Approximate Stationary Points of Simple Neural Networks
Mahsa Taheri
Fang Xie
Johannes Lederer
29
0
0
09 May 2022
On Feature Learning in Neural Networks with Global Convergence Guarantees
Zhengdao Chen
Eric Vanden-Eijnden
Joan Bruna
MLT
36
13
0
22 Apr 2022
Side Effects of Learning from Low-dimensional Data Embedded in a Euclidean Space
Juncai He
R. Tsai
Rachel A. Ward
36
8
0
01 Mar 2022
Deep Constrained Least Squares for Blind Image Super-Resolution
Ziwei Luo
Haibin Huang
Lei Yu
Youwei Li
Haoqiang Fan
Shuaicheng Liu
SupR
35
87
0
15 Feb 2022
PFGE: Parsimonious Fast Geometric Ensembling of DNNs
Hao Guo
Jiyong Jin
B. Liu
FedML
32
1
0
14 Feb 2022
Exact Solutions of a Deep Linear Network
Liu Ziyin
Botao Li
Xiangmin Meng
ODL
19
21
0
10 Feb 2022
Stochastic Neural Networks with Infinite Width are Deterministic
Liu Ziyin
Hanlin Zhang
Xiangming Meng
Yuting Lu
Eric P. Xing
Masakuni Ueda
34
3
0
30 Jan 2022
Understanding Deep Contrastive Learning via Coordinate-wise Optimization
Yuandong Tian
52
34
0
29 Jan 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
33
3
0
28 Jan 2022
Low-Pass Filtering SGD for Recovering Flat Optima in the Deep Learning Optimization Landscape
Devansh Bisla
Jing Wang
A. Choromańska
27
34
0
20 Jan 2022
Deep Network Approximation in Terms of Intrinsic Parameters
Zuowei Shen
Haizhao Yang
Shijun Zhang
21
9
0
15 Nov 2021
Gradients are Not All You Need
Luke Metz
C. Freeman
S. Schoenholz
Tal Kachman
30
93
0
10 Nov 2021
Mode connectivity in the loss landscape of parameterized quantum circuits
Kathleen E. Hamilton
E. Lynn
R. Pooser
29
3
0
09 Nov 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
35
7
0
11 Oct 2021
1
2
3
4
Next