Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.03661
Cited By
Learning Representations for Counterfactual Inference
12 May 2016
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Representations for Counterfactual Inference"
50 / 109 papers shown
Title
Generalization bounds and algorithms for estimating conditional average treatment effect of dosage
Alexis Bellot
Anish Dhir
G. Prando
CML
18
11
0
29 May 2022
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Nathan Kallus
M. Oprescu
CML
OOD
35
10
0
23 May 2022
An improved neural network model for treatment effect estimation
Niki Kiriakidou
Christos Diou
CML
48
3
0
23 May 2022
Neuroevolutionary Feature Representations for Causal Inference
Michael C. Burkhart
Gabriel Ruiz
CML
OOD
21
2
0
21 May 2022
Deconfounding Actor-Critic Network with Policy Adaptation for Dynamic Treatment Regimes
Changchang Yin
Ruoqi Liu
Jeffrey Caterino
Ping Zhang
OffRL
32
5
0
19 May 2022
Deep Multi-Modal Structural Equations For Causal Effect Estimation With Unstructured Proxies
Shachi Deshpande
Kaiwen Wang
Dhruv Sreenivas
Zheng Li
Volodymyr Kuleshov
CML
SyDa
10
11
0
18 Mar 2022
Multi-Task Adversarial Learning for Treatment Effect Estimation in Basket Trials
Zhixuan Chu
S. Rathbun
Sheng Li
CML
22
10
0
10 Mar 2022
Estimating causal effects with optimization-based methods: A review and empirical comparison
Martin Cousineau
V. Verter
S. Murphy
J. Pineau
CML
16
9
0
28 Feb 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
52
29
0
25 Feb 2022
Diffusion Causal Models for Counterfactual Estimation
Pedro Sanchez
Sotirios A. Tsaftaris
DiffM
BDL
29
69
0
21 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
24
29
0
02 Feb 2022
A Causal Lens for Controllable Text Generation
Zhiting Hu
Erran L. Li
45
59
0
22 Jan 2022
BITES: Balanced Individual Treatment Effect for Survival data
Stefan Schrod
Andreas Schäfer
S. Solbrig
R. Lohmayer
W. Gronwald
P. Oefner
T. Beissbarth
Rainer Spang
H. Zacharias
Michael Altenbuchinger
CML
15
22
0
05 Jan 2022
Causal Knowledge Guided Societal Event Forecasting
Songgaojun Deng
Huzefa Rangwala
Yue Ning
AI4TS
24
2
0
10 Dec 2021
Enhancing Counterfactual Classification via Self-Training
Ruijiang Gao
Max Biggs
Wei-Ju Sun
Ligong Han
CML
OffRL
32
6
0
08 Dec 2021
Loss Functions for Discrete Contextual Pricing with Observational Data
Max Biggs
Ruijiang Gao
Wei-Ju Sun
31
10
0
18 Nov 2021
Interpretable Personalized Experimentation
Han Wu
S. Tan
Weiwei Li
Mia Garrard
Adam Obeng
Drew Dimmery
Shaun Singh
Hanson Wang
Daniel R. Jiang
E. Bakshy
25
5
0
05 Nov 2021
Cycle-Balanced Representation Learning For Counterfactual Inference
Guanglin Zhou
L. Yao
Xiwei Xu
Chen Wang
Liming Zhu
CML
OOD
14
12
0
29 Oct 2021
Heterogeneous Effects of Software Patches in a Multiplayer Online Battle Arena Game
Yuzi He
Christopher Tran
Julie Jiang
Keith Burghardt
Emilio Ferrara
Elena Zheleva
Kristina Lerman
19
10
0
27 Oct 2021
β
β
β
-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap
Pengzhou (Abel) Wu
Kenji Fukumizu
CML
35
14
0
11 Oct 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
27
3
0
30 Sep 2021
Heterogeneous Treatment Effect Estimation using machine learning for Healthcare application: tutorial and benchmark
Yaobin Ling
Pulakesh Upadhyaya
Luyao Chen
Xiaoqian Jiang
Yejin Kim
CML
14
17
0
27 Sep 2021
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
26
16
0
04 Sep 2021
The Bias-Variance Tradeoff of Doubly Robust Estimator with Targeted
L
1
L_1
L
1
regularized Neural Networks Predictions
M. Rostami
O. Saarela
M. Escobar
40
1
0
02 Aug 2021
Auto IV: Counterfactual Prediction via Automatic Instrumental Variable Decomposition
Junkun Yuan
Anpeng Wu
Kun Kuang
Yangqiu Song
Runze Wu
Fei Wu
Lanfen Lin
CML
42
38
0
13 Jul 2021
Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge
Abhin Shah
Karthikeyan Shanmugam
Kartik Ahuja
CML
36
12
0
22 Jun 2021
Learning from Counterfactual Links for Link Prediction
Tong Zhao
Gang Liu
Daheng Wang
Wenhao Yu
Meng Jiang
CML
OOD
28
93
0
03 Jun 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
11
16
0
20 Mar 2021
VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
Lizhen Nie
Mao Ye
Qiang Liu
D. Nicolae
CML
17
68
0
14 Mar 2021
Limitations of Post-Hoc Feature Alignment for Robustness
Collin Burns
Jacob Steinhardt
OOD
14
22
0
10 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
35
108
0
08 Mar 2021
Conditional Distributional Treatment Effect with Kernel Conditional Mean Embeddings and U-Statistic Regression
Junhyung Park
Uri Shalit
Bernhard Schölkopf
Krikamol Muandet
CML
21
31
0
16 Feb 2021
Causality-aware counterfactual confounding adjustment as an alternative to linear residualization in anticausal prediction tasks based on linear learners
E. C. Neto
OOD
CML
24
6
0
09 Nov 2020
Estimating Individual Treatment Effects using Non-Parametric Regression Models: a Review
A. Caron
G. Baio
I. Manolopoulou
CML
28
52
0
14 Sep 2020
Estimating Individual Treatment Effects with Time-Varying Confounders
Ruoqi Liu
Changchang Yin
Ping Zhang
CML
26
27
0
27 Aug 2020
On Learning Language-Invariant Representations for Universal Machine Translation
Hao Zhao
Junjie Hu
Andrej Risteski
40
11
0
11 Aug 2020
Learning Decomposed Representation for Counterfactual Inference
Anpeng Wu
Kun Kuang
Junkun Yuan
Bo Li
Jianrong Tao
Qiang Zhu
Yueting Zhuang
Fei Wu
CML
21
21
0
12 Jun 2020
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Amir Feder
Nadav Oved
Uri Shalit
Roi Reichart
CML
LRM
36
156
0
27 May 2020
Estimating the Effects of Continuous-valued Interventions using Generative Adversarial Networks
Ioana Bica
James Jordon
M. Schaar
CML
22
105
0
27 Feb 2020
MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models
Imke Mayer
Julie Josse
Félix Raimundo
Jean-Philippe Vert
CML
24
12
0
25 Feb 2020
Causal Inference under Networked Interference and Intervention Policy Enhancement
Yunpu Ma
Volker Tresp
CML
31
40
0
20 Feb 2020
Estimating Counterfactual Treatment Outcomes over Time Through Adversarially Balanced Representations
Ioana Bica
Ahmed Alaa
James Jordon
M. Schaar
BDL
CML
11
179
0
10 Feb 2020
Artificial Intelligence for Social Good: A Survey
Zheyuan Ryan Shi
Claire Wang
Fei Fang
AI4TS
32
81
0
07 Jan 2020
Counterfactual Evaluation of Treatment Assignment Functions with Networked Observational Data
Ruocheng Guo
Jundong Li
Huan Liu
CML
OffRL
25
21
0
22 Dec 2019
Learning Fair and Transferable Representations
L. Oneto
Michele Donini
Andreas Maurer
Massimiliano Pontil
FaML
34
19
0
25 Jun 2019
Counterfactual Off-Policy Evaluation with Gumbel-Max Structural Causal Models
Michael Oberst
David Sontag
CML
OffRL
13
168
0
14 May 2019
Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines
Chirag Nagpal
Dennis L. Wei
B. Vinzamuri
Monica Shekhar
Sara E. Berger
Subhro Das
Kush R. Varshney
CML
6
25
0
08 May 2019
Classifying Treatment Responders Under Causal Effect Monotonicity
Nathan Kallus
CML
23
16
0
14 Feb 2019
A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms
Yoshua Bengio
T. Deleu
Nasim Rahaman
Nan Rosemary Ke
Sébastien Lachapelle
O. Bilaniuk
Anirudh Goyal
C. Pal
CML
OOD
46
332
0
30 Jan 2019
Adversarial Balancing for Causal Inference
Michal Ozery-Flato
Pierre Thodoroff
Matan Ninio
Michal Rosen-Zvi
T. El-Hay
CML
GAN
8
25
0
17 Oct 2018
Previous
1
2
3
Next