ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.03267
25
5

Interpretable Personalized Experimentation

5 November 2021
Han Wu
S. Tan
Weiwei Li
Mia Garrard
Adam Obeng
Drew Dimmery
Shaun Singh
Hanson Wang
Daniel R. Jiang
E. Bakshy
ArXivPDFHTML
Abstract

Black-box heterogeneous treatment effect (HTE) models are increasingly being used to create personalized policies that assign individuals to their optimal treatments. However, they are difficult to understand, and can be burdensome to maintain in a production environment. In this paper, we present a scalable, interpretable personalized experimentation system, implemented and deployed in production at Meta. The system works in a multiple treatment, multiple outcome setting typical at Meta to: (1) learn explanations for black-box HTE models; (2) generate interpretable personalized policies. We evaluate the methods used in the system on publicly available data and Meta use cases, and discuss lessons learnt during the development of the system.

View on arXiv
Comments on this paper