ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.03661
  4. Cited By
Learning Representations for Counterfactual Inference

Learning Representations for Counterfactual Inference

12 May 2016
Fredrik D. Johansson
Uri Shalit
David Sontag
    CML
    OOD
    BDL
ArXivPDFHTML

Papers citing "Learning Representations for Counterfactual Inference"

50 / 109 papers shown
Title
Q-function Decomposition with Intervention Semantics with Factored Action Spaces
Q-function Decomposition with Intervention Semantics with Factored Action Spaces
Junkyu Lee
Tian Gao
Elliot Nelson
Miao Liu
D. Bhattacharjya
Songtao Lu
OffRL
45
0
0
30 Apr 2025
The Estimation of Continual Causal Effect for Dataset Shifting Streams
The Estimation of Continual Causal Effect for Dataset Shifting Streams
Baining Chen
Yiming Zhang
Yuqiao Han
Ruyue Zhang
Ruihuan Du
Zhishuo Zhou
Zhengdan Zhu
Xun Liu
Jiecheng Guo
125
0
0
29 Apr 2025
Representation Learning Preserving Ignorability and Covariate Matching for Treatment Effects
Representation Learning Preserving Ignorability and Covariate Matching for Treatment Effects
Praharsh Nanavati
Ranjitha Prasad
Karthikeyan Shanmugam
OOD
CML
66
0
0
29 Apr 2025
TSCAN: Context-Aware Uplift Modeling via Two-Stage Training for Online Merchant Business Diagnosis
TSCAN: Context-Aware Uplift Modeling via Two-Stage Training for Online Merchant Business Diagnosis
Hangtao Zhang
Zhe Li
Kaipeng Zhang
31
0
0
26 Apr 2025
Semiparametric Counterfactual Regression
Semiparametric Counterfactual Regression
Kwangho Kim
OffRL
36
0
0
03 Apr 2025
Nonparametric Heterogeneous Long-term Causal Effect Estimation via Data Combination
Nonparametric Heterogeneous Long-term Causal Effect Estimation via Data Combination
Weilin Chen
Ruichu Cai
Junjie Wan
Zeqin Yang
José Miguel Hernández-Lobato
51
1
0
26 Feb 2025
Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
Individualised Treatment Effects Estimation with Composite Treatments and Composite Outcomes
V. Chauhan
Lei A. Clifton
Gaurav Nigam
David A. Clifton
CML
63
0
0
12 Feb 2025
Stabilized Neural Prediction of Potential Outcomes in Continuous Time
Stabilized Neural Prediction of Potential Outcomes in Continuous Time
Konstantin Hess
Stefan Feuerriegel
48
0
0
04 Oct 2024
Identifying treatment response subgroups in observational time-to-event data
Identifying treatment response subgroups in observational time-to-event data
Vincent Jeanselme
Chang Ho Yoon
Fabian Falck
Brian D. M. Tom
Jessica Barrett
OOD
CML
45
0
0
06 Aug 2024
On the Effects of Irrelevant Variables in Treatment Effect Estimation
  with Deep Disentanglement
On the Effects of Irrelevant Variables in Treatment Effect Estimation with Deep Disentanglement
Ahmad Saeed Khan
Erik Schaffernicht
J. A. Stork
CML
39
0
0
29 Jul 2024
Compositional Models for Estimating Causal Effects
Compositional Models for Estimating Causal Effects
Purva Pruthi
David D. Jensen
CML
67
0
0
25 Jun 2024
Conformal Counterfactual Inference under Hidden Confounding
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CML
OffRL
47
2
0
20 May 2024
Doubly Robust Causal Effect Estimation under Networked Interference via
  Targeted Learning
Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning
Weilin Chen
Ruichu Cai
Zeqin Yang
Jie Qiao
Yuguang Yan
Zijian Li
Zhifeng Hao
CML
42
7
0
06 May 2024
Differentiable Pareto-Smoothed Weighting for High-Dimensional
  Heterogeneous Treatment Effect Estimation
Differentiable Pareto-Smoothed Weighting for High-Dimensional Heterogeneous Treatment Effect Estimation
Yoichi Chikahara
Kansei Ushiyama
39
0
0
26 Apr 2024
C-XGBoost: A tree boosting model for causal effect estimation
C-XGBoost: A tree boosting model for causal effect estimation
Niki Kiriakidou
I. Livieris
Christos Diou
CML
31
1
0
31 Mar 2024
Triple/Debiased Lasso for Statistical Inference of Conditional Average
  Treatment Effects
Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects
Masahiro Kato
CML
39
1
0
05 Mar 2024
Defining Expertise: Applications to Treatment Effect Estimation
Defining Expertise: Applications to Treatment Effect Estimation
Alihan Huyuk
Qiyao Wei
Alicia Curth
M. Schaar
CML
40
2
0
01 Mar 2024
Federated Learning for Estimating Heterogeneous Treatment Effects
Federated Learning for Estimating Heterogeneous Treatment Effects
Disha Makhija
Joydeep Ghosh
Yejin Kim
CML
FedML
40
2
0
27 Feb 2024
When Graph Neural Network Meets Causality: Opportunities, Methodologies
  and An Outlook
When Graph Neural Network Meets Causality: Opportunities, Methodologies and An Outlook
Wenzhao Jiang
Hao Liu
Hui Xiong
CML
AI4CE
49
2
0
19 Dec 2023
Adversarially Balanced Representation for Continuous Treatment Effect
  Estimation
Adversarially Balanced Representation for Continuous Treatment Effect Estimation
Amirreza Kazemi
Martin Ester
CML
OOD
35
3
0
17 Dec 2023
A Neural Framework for Generalized Causal Sensitivity Analysis
A Neural Framework for Generalized Causal Sensitivity Analysis
Dennis Frauen
F. Imrie
Alicia Curth
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
31
10
0
27 Nov 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect
  Estimation
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
32
9
0
19 Nov 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
68
2
0
16 Oct 2023
Generalizable Resource Scaling of 5G Slices using Constrained
  Reinforcement Learning
Generalizable Resource Scaling of 5G Slices using Constrained Reinforcement Learning
Muhammad Sulaiman
Mahdieh Ahmadi
M. A. Salahuddin
R. Boutaba
A. Saleh
39
6
0
15 Jun 2023
Dynamic Inter-treatment Information Sharing for Individualized Treatment
  Effects Estimation
Dynamic Inter-treatment Information Sharing for Individualized Treatment Effects Estimation
V. Chauhan
Jiandong Zhou
Ghadeer O. Ghosheh
Soheila Molaei
David A. Clifton
30
8
0
25 May 2023
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
An Efficient Doubly-Robust Test for the Kernel Treatment Effect
Diego Martinez-Taboada
Aaditya Ramdas
Edward H. Kennedy
OOD
23
5
0
26 Apr 2023
Continual Causal Inference with Incremental Observational Data
Continual Causal Inference with Incremental Observational Data
Zhixuan Chu
Ruopeng Li
S. Rathbun
Sheng Li
CML
41
14
0
03 Mar 2023
Understanding the Impact of Competing Events on Heterogeneous Treatment
  Effect Estimation from Time-to-Event Data
Understanding the Impact of Competing Events on Heterogeneous Treatment Effect Estimation from Time-to-Event Data
Alicia Curth
M. Schaar
CML
10
3
0
23 Feb 2023
Domain Adaptation via Rebalanced Sub-domain Alignment
Domain Adaptation via Rebalanced Sub-domain Alignment
Yi-Ling Liu
Juncheng Dong
Ziyang Jiang
Ahmed Aloui
Keyu Li
Hunter Klein
Vahid Tarokh
David Carlson
34
2
0
03 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Anton van den Hengel
AI4CE
55
11
0
29 Jan 2023
Proximal Causal Learning of Conditional Average Treatment Effects
Proximal Causal Learning of Conditional Average Treatment Effects
Erik Sverdrup
Yifan Cui
CML
28
4
0
26 Jan 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
30
1
0
16 Jan 2023
Unpacking the "Black Box" of AI in Education
Unpacking the "Black Box" of AI in Education
Nabeel Gillani
R. Eynon
Catherine Chiabaut
Kelsey Finkel
31
58
0
31 Dec 2022
Deep Causal Learning for Robotic Intelligence
Deep Causal Learning for Robotic Intelligence
Yongqian Li
CML
37
5
0
23 Dec 2022
TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
  Treatment Perspective
TCFimt: Temporal Counterfactual Forecasting from Individual Multiple Treatment Perspective
Pengfei Xi
Guifeng Wang
Zhipeng Hu
Yu Xiong
Ming‐Fu Gong
...
Runze Wu
Yu-qiong Ding
Tangjie Lv
Changjie Fan
Xiangnan Feng
CML
AI4TS
AI4CE
18
0
0
17 Dec 2022
Counterfactual Learning with Multioutput Deep Kernels
Counterfactual Learning with Multioutput Deep Kernels
A. Caron
G. Baio
I. Manolopoulou
BDL
CML
OffRL
25
1
0
20 Nov 2022
Confounder Balancing for Instrumental Variable Regression with Latent
  Variable
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Fei Wu
CML
40
0
0
18 Nov 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Bayesian Counterfactual Mean Embeddings and Off-Policy Evaluation
Diego Martinez-Taboada
Dino Sejdinovic
CML
OffRL
23
0
0
02 Nov 2022
Learning Individual Treatment Effects under Heterogeneous Interference
  in Networks
Learning Individual Treatment Effects under Heterogeneous Interference in Networks
Ziyu Zhao
Yuqi Bai
Kun Kuang
Ruoxuan Xiong
Fei Wu
CML
24
6
0
25 Oct 2022
Neural Causal Models for Counterfactual Identification and Estimation
Neural Causal Models for Counterfactual Identification and Estimation
K. Xia
Yushu Pan
Elias Bareinboim
CML
43
32
0
30 Sep 2022
Moderately-Balanced Representation Learning for Treatment Effects with
  Orthogonality Information
Moderately-Balanced Representation Learning for Treatment Effects with Orthogonality Information
Yiyan Huang
Cheuk Hang Leung
Shumin Ma
Qi Wu
DongDong Wang
Zhixiang Huang
OOD
CML
37
3
0
05 Sep 2022
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple
  Imbalanced Treatment Effects
Learning to Infer Counterfactuals: Meta-Learning for Estimating Multiple Imbalanced Treatment Effects
Guanglin Zhou
Lina Yao
Xiwei Xu
Chen Wang
Liming Zhu
OOD
CML
BDL
19
2
0
13 Aug 2022
Long-term Causal Effects Estimation via Latent Surrogates Representation
  Learning
Long-term Causal Effects Estimation via Latent Surrogates Representation Learning
Ruichu Cai
Weilin Chen
Zeqin Yang
Shu Wan
Chen Zheng
Xiaoqing Yang
Jiecheng Guo
CML
BDL
37
12
0
09 Aug 2022
Device-Cloud Collaborative Recommendation via Meta Controller
Device-Cloud Collaborative Recommendation via Meta Controller
Jiangchao Yao
Feng Wang
Xichen Ding
Shaohu Chen
Bo Han
Jingren Zhou
Hongxia Yang
30
17
0
07 Jul 2022
Interpretable Deep Causal Learning for Moderation Effects
Interpretable Deep Causal Learning for Moderation Effects
A. Caron
G. Baio
I. Manolopoulou
CML
OOD
23
2
0
21 Jun 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of
  Interpretability
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
22
16
0
16 Jun 2022
Continuous-Time Modeling of Counterfactual Outcomes Using Neural
  Controlled Differential Equations
Continuous-Time Modeling of Counterfactual Outcomes Using Neural Controlled Differential Equations
Nabeel Seedat
F. Imrie
Alexis Bellot
Zhaozhi Qian
M. Schaar
OOD
CML
29
52
0
16 Jun 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
29
2
0
06 Jun 2022
Learning Disentangled Representations for Counterfactual Regression via
  Mutual Information Minimization
Learning Disentangled Representations for Counterfactual Regression via Mutual Information Minimization
Min Cheng
Xinru Liao
Quanlian Liu
Bin Ma
Jian Xu
Bo Zheng
CML
14
24
0
02 Jun 2022
123
Next