ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.08637
  4. Cited By
Learning a Predictable and Generative Vector Representation for Objects
v1v2 (latest)

Learning a Predictable and Generative Vector Representation for Objects

29 March 2016
Rohit Girdhar
David Fouhey
Mikel D. Rodriguez
Abhinav Gupta
    3DV
ArXiv (abs)PDFHTML

Papers citing "Learning a Predictable and Generative Vector Representation for Objects"

24 / 24 papers shown
Title
CAD-NeRF: Learning NeRFs from Uncalibrated Few-view Images by CAD Model Retrieval
CAD-NeRF: Learning NeRFs from Uncalibrated Few-view Images by CAD Model Retrieval
Xin Wen
Xuening Zhu
Renjiao Yi
Z. T. Wang
Chenyang Zhu
K. Xu
121
1
0
05 Nov 2024
Enhancing Performance of Point Cloud Completion Networks with Consistency Loss
Enhancing Performance of Point Cloud Completion Networks with Consistency Loss
Christofel Rio Goenawan
Kevin Tirta Wijaya
Seung-Hyun Kong
3DPC
372
1
0
09 Oct 2024
LOOC: Localizing Organs using Occupancy Networks and Body Surface Depth Images
LOOC: Localizing Organs using Occupancy Networks and Body Surface Depth Images
P. Henrich
Franziska Mathis-Ullrich
77
2
0
18 Jun 2024
MultiPlaneNeRF: Neural Radiance Field with Non-Trainable Representation
MultiPlaneNeRF: Neural Radiance Field with Non-Trainable Representation
D. Zimny
Artur Kasymov
Adam Kania
Jacek Tabor
Maciej Ziȩba
Przemysław Spurek
Przemysław Spurek
3DV
119
2
0
17 May 2023
Implicit Functions in Feature Space for 3D Shape Reconstruction and
  Completion
Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
Julian Chibane
Thiemo Alldieck
Gerard Pons-Moll
3DPC
158
497
0
03 Mar 2020
FPNN: Field Probing Neural Networks for 3D Data
FPNN: Field Probing Neural Networks for 3D Data
Yangyan Li
Soren Pirk
Hao Su
C. Qi
Leonidas Guibas
3DPC
97
290
0
20 May 2016
Single Image 3D Interpreter Network
Single Image 3D Interpreter Network
Jiajun Wu
Tianfan Xue
Joseph J Lim
Yuandong Tian
J. Tenenbaum
Antonio Torralba
William T. Freeman
3DV
73
285
0
29 Apr 2016
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object
  Reconstruction
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
Chris Choy
Danfei Xu
JunYoung Gwak
Kevin Chen
Silvio Savarese
3DV
92
1,719
0
02 Apr 2016
ShapeNet: An Information-Rich 3D Model Repository
ShapeNet: An Information-Rich 3D Model Repository
Angel X. Chang
Thomas Funkhouser
Leonidas Guibas
Pat Hanrahan
Qi-Xing Huang
...
Shuran Song
Hao Su
Jianxiong Xiao
L. Yi
Feng Yu
3DV
172
5,538
0
09 Dec 2015
Unsupervised Representation Learning with Deep Convolutional Generative
  Adversarial Networks
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
Alec Radford
Luke Metz
Soumith Chintala
GANOOD
271
14,023
0
19 Nov 2015
Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with
  Rendered 3D Model Views
Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
Hao Su
C. Qi
Yangyan Li
Leonidas Guibas
99
737
0
21 May 2015
Multi-view Convolutional Neural Networks for 3D Shape Recognition
Multi-view Convolutional Neural Networks for 3D Shape Recognition
Hang Su
Subhransu Maji
E. Kalogerakis
Erik Learned-Miller
3DV
162
3,220
0
05 May 2015
Deep Convolutional Inverse Graphics Network
Deep Convolutional Inverse Graphics Network
Tejas D. Kulkarni
William F. Whitney
Pushmeet Kohli
J. Tenenbaum
DRLBDL
103
929
0
11 Mar 2015
Inferring 3D Object Pose in RGB-D Images
Inferring 3D Object Pose in RGB-D Images
Saurabh Gupta
Pablo Arbeláez
Ross B. Girshick
Jitendra Malik
3DPC
40
33
0
16 Feb 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on
  ImageNet Classification
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
341
18,651
0
06 Feb 2015
Learning Deep Object Detectors from 3D Models
Learning Deep Object Detectors from 3D Models
Xingchao Peng
Baochen Sun
Karim Ali
Kate Saenko
3DPC3DV
66
59
0
22 Dec 2014
Category-Specific Object Reconstruction from a Single Image
Category-Specific Object Reconstruction from a Single Image
Abhishek Kar
Shubham Tulsiani
João Carreira
Jitendra Malik
3DV
65
287
0
22 Nov 2014
Learning to Generate Chairs, Tables and Cars with Convolutional Networks
Learning to Generate Chairs, Tables and Cars with Convolutional Networks
Alexey Dosovitskiy
Jost Tobias Springenberg
Maxim Tatarchenko
Thomas Brox
GAN
179
676
0
21 Nov 2014
Designing Deep Networks for Surface Normal Estimation
Designing Deep Networks for Surface Normal Estimation
Xinyu Wang
David Fouhey
Abhinav Gupta
3DVSSL
280
356
0
18 Nov 2014
Predicting Depth, Surface Normals and Semantic Labels with a Common
  Multi-Scale Convolutional Architecture
Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
David Eigen
Rob Fergus
VLMMDE
209
2,683
0
18 Nov 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAttMDE
1.7K
100,508
0
04 Sep 2014
Caffe: Convolutional Architecture for Fast Feature Embedding
Caffe: Convolutional Architecture for Fast Feature Embedding
Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross B. Girshick
S. Guadarrama
Trevor Darrell
VLMBDL3DV
280
14,712
0
20 Jun 2014
Depth Map Prediction from a Single Image using a Multi-Scale Deep
  Network
Depth Map Prediction from a Single Image using a Multi-Scale Deep Network
David Eigen
Christian Puhrsch
Rob Fergus
MDE3DPC3DV
241
4,066
0
09 Jun 2014
Distributed Representations of Words and Phrases and their
  Compositionality
Distributed Representations of Words and Phrases and their Compositionality
Tomas Mikolov
Ilya Sutskever
Kai Chen
G. Corrado
J. Dean
NAIOCL
402
33,565
0
16 Oct 2013
1