Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.06560
Cited By
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
21 March 2016
Lisha Li
Kevin G. Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization"
50 / 262 papers shown
Title
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
18
36
0
08 Jun 2020
Combinatorial Black-Box Optimization with Expert Advice
Hamid Dadkhahi
Karthikeyan Shanmugam
Jesus Rios
Payel Das
Samuel C. Hoffman
T. Loeffler
S. Sankaranarayanan
25
16
0
06 Jun 2020
Relational Learning Analysis of Social Politics using Knowledge Graph Embedding
Bilal Abu-Salih
Marwan Al-Tawil
Ibrahim Aljarah
Hossam Faris
P. Wongthongtham
22
59
0
02 Jun 2020
Gradient Monitored Reinforcement Learning
Mohammed Sharafath Abdul Hameed
Gavneet Singh Chadha
Andreas Schwung
S. Ding
33
10
0
25 May 2020
Sherpa: Robust Hyperparameter Optimization for Machine Learning
L. Hertel
Julian Collado
Peter Sadowski
J. Ott
Pierre Baldi
86
103
0
08 May 2020
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Esteban Real
Chen Liang
David R. So
Quoc V. Le
39
220
0
06 Mar 2020
Automatic Hyper-Parameter Optimization Based on Mapping Discovery from Data to Hyper-Parameters
Bozhou Chen
Kaixin Zhang
Longshen Ou
Chenmin Ba
Hongzhi Wang
Chunnan Wang
16
2
0
03 Mar 2020
Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude Estimation
Martin Brossard
Silvere Bonnabel
Axel Barrau
24
125
0
25 Feb 2020
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Zou
FAtt
TDI
25
108
0
23 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
483
0
12 Feb 2020
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
75
83
0
06 Feb 2020
When Wireless Security Meets Machine Learning: Motivation, Challenges, and Research Directions
Y. Sagduyu
Yi Shi
T. Erpek
William C. Headley
Bryse Flowers
G. Stantchev
Zhuo Lu
AAML
20
39
0
24 Jan 2020
Optimized Generic Feature Learning for Few-shot Classification across Domains
Tonmoy Saikia
Thomas Brox
Cordelia Schmid
VLM
30
48
0
22 Jan 2020
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search
Xuanyi Dong
Yi Yang
43
695
0
02 Jan 2020
Robust Federated Learning Through Representation Matching and Adaptive Hyper-parameters
Hesham Mostafa
FedML
31
39
0
30 Dec 2019
FLAML: A Fast and Lightweight AutoML Library
Chi Wang
Qingyun Wu
Markus Weimer
Erkang Zhu
30
196
0
12 Nov 2019
Adversarial Deep Learning for Over-the-Air Spectrum Poisoning Attacks
Y. Sagduyu
Yi Shi
T. Erpek
AAML
25
83
0
01 Nov 2019
DeepWiFi: Cognitive WiFi with Deep Learning
Kemal Davaslioglu
S. Soltani
T. Erpek
Y. Sagduyu
15
45
0
29 Oct 2019
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Colin White
Willie Neiswanger
Yash Savani
BDL
42
313
0
25 Oct 2019
ReNAS:Relativistic Evaluation of Neural Architecture Search
Yixing Xu
Yunhe Wang
Avishkar Bhoopchand
Christopher Mattern
A. Grabska-Barwinska
Chunjing Xu
Chang Xu
27
82
0
30 Sep 2019
Towards modular and programmable architecture search
Renato M. P. Negrinho
Darshan Patil
Nghia T. Le
Daniel C. Ferreira
Matthew R. Gormley
Geoffrey J. Gordon
24
26
0
30 Sep 2019
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
27
96
0
27 Sep 2019
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
Xiaowen Chu
20
1,420
0
02 Aug 2019
Hyperparameter Optimisation with Early Termination of Poor Performers
D. Marinov
Daniel Karapetyan
11
10
0
19 Jul 2019
Automated Machine Learning in Practice: State of the Art and Recent Results
Lukas Tuggener
Mohammadreza Amirian
Katharina Rombach
Stefan Lörwald
Anastasia Varlet
Christian Westermann
Thilo Stadelmann
21
63
0
19 Jul 2019
Exploration by Optimisation in Partial Monitoring
Tor Lattimore
Csaba Szepesvári
28
38
0
12 Jul 2019
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates
Ning Liu
Xiaolong Ma
Zhiyuan Xu
Yanzhi Wang
Jian Tang
Jieping Ye
40
183
0
06 Jul 2019
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural Network Training
William Harvey
Michael Teng
Frank Wood
31
4
0
13 Jun 2019
Model Similarity Mitigates Test Set Overuse
Horia Mania
John Miller
Ludwig Schmidt
Moritz Hardt
Benjamin Recht
20
50
0
29 May 2019
The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective System Development
Micah J. Smith
Carles Sala Cladellas
James Max Kanter
K. Veeramachaneni
24
49
0
22 May 2019
Which Tasks Should Be Learned Together in Multi-task Learning?
Trevor Scott Standley
Amir Zamir
Dawn Chen
Leonidas J. Guibas
Jitendra Malik
Silvio Savarese
24
502
0
18 May 2019
CrossTrainer: Practical Domain Adaptation with Loss Reweighting
Justin Chen
Edward Gan
Kexin Rong
S. Suri
Peter Bailis
22
4
0
07 May 2019
The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure For Least Squares
Rong Ge
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
34
149
0
29 Apr 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
25
86
0
26 Apr 2019
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
C. Hegde
19
11
0
24 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
33
128
0
17 Apr 2019
Hyper-Parameter Tuning for the (1+(λ,λ)) GA
Nguyen Dang
Carola Doerr
15
21
0
09 Apr 2019
A Survey on Practical Applications of Multi-Armed and Contextual Bandits
Djallel Bouneffouf
Irina Rish
11
119
0
02 Apr 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
29
174
0
15 Mar 2019
NAS-Bench-101: Towards Reproducible Neural Architecture Search
Chris Ying
Aaron Klein
Esteban Real
Eric Christiansen
Kevin Patrick Murphy
Frank Hutter
12
672
0
25 Feb 2019
Fast Hyperparameter Tuning using Bayesian Optimization with Directional Derivatives
Tinu Theckel Joy
Santu Rana
Sunil R. Gupta
Svetha Venkatesh
21
55
0
06 Feb 2019
A System for Massively Parallel Hyperparameter Tuning
Liam Li
Kevin G. Jamieson
Afshin Rostamizadeh
Ekaterina Gonina
Moritz Hardt
Benjamin Recht
Ameet Talwalkar
24
372
0
13 Oct 2018
Safe Grid Search with Optimal Complexity
Eugène Ndiaye
Tam Le
Olivier Fercoq
Joseph Salmon
Ichiro Takeuchi
38
45
0
12 Oct 2018
On Kernel Derivative Approximation with Random Fourier Features
Z. Szabó
Bharath K. Sriperumbudur
32
12
0
11 Oct 2018
CHOPT : Automated Hyperparameter Optimization Framework for Cloud-Based Machine Learning Platforms
Jingwoong Kim
Minkyu Kim
Heungseok Park
Ernar Kusdavletov
Dongjun Lee
A. Kim
Ji-Hoon Kim
Jung-Woo Ha
Nako Sung
28
14
0
08 Oct 2018
OBOE: Collaborative Filtering for AutoML Model Selection
Chengrun Yang
Yuji Akimoto
Dae Won Kim
Madeleine Udell
18
100
0
09 Aug 2018
Teacher Guided Architecture Search
P. Bashivan
Mark Tensen
J. DiCarlo
3DV
27
27
0
04 Aug 2018
Tune: A Research Platform for Distributed Model Selection and Training
Richard Liaw
Eric Liang
Robert Nishihara
Philipp Moritz
Joseph E. Gonzalez
Ion Stoica
19
881
0
13 Jul 2018
Bandit-Based Monte Carlo Optimization for Nearest Neighbors
Vivek Bagaria
Tavor Z. Baharav
G. Kamath
David Tse
13
12
0
21 May 2018
Previous
1
2
3
4
5
6
Next