ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.06560
  4. Cited By
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization

21 March 2016
Lisha Li
Kevin G. Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
ArXivPDFHTML

Papers citing "Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization"

50 / 262 papers shown
Title
Speedy Performance Estimation for Neural Architecture Search
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
18
36
0
08 Jun 2020
Combinatorial Black-Box Optimization with Expert Advice
Combinatorial Black-Box Optimization with Expert Advice
Hamid Dadkhahi
Karthikeyan Shanmugam
Jesus Rios
Payel Das
Samuel C. Hoffman
T. Loeffler
S. Sankaranarayanan
25
16
0
06 Jun 2020
Relational Learning Analysis of Social Politics using Knowledge Graph
  Embedding
Relational Learning Analysis of Social Politics using Knowledge Graph Embedding
Bilal Abu-Salih
Marwan Al-Tawil
Ibrahim Aljarah
Hossam Faris
P. Wongthongtham
22
59
0
02 Jun 2020
Gradient Monitored Reinforcement Learning
Gradient Monitored Reinforcement Learning
Mohammed Sharafath Abdul Hameed
Gavneet Singh Chadha
Andreas Schwung
S. Ding
33
10
0
25 May 2020
Sherpa: Robust Hyperparameter Optimization for Machine Learning
Sherpa: Robust Hyperparameter Optimization for Machine Learning
L. Hertel
Julian Collado
Peter Sadowski
J. Ott
Pierre Baldi
86
103
0
08 May 2020
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch
Esteban Real
Chen Liang
David R. So
Quoc V. Le
39
220
0
06 Mar 2020
Automatic Hyper-Parameter Optimization Based on Mapping Discovery from
  Data to Hyper-Parameters
Automatic Hyper-Parameter Optimization Based on Mapping Discovery from Data to Hyper-Parameters
Bozhou Chen
Kaixin Zhang
Longshen Ou
Chenmin Ba
Hongzhi Wang
Chunnan Wang
16
2
0
03 Mar 2020
Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude
  Estimation
Denoising IMU Gyroscopes with Deep Learning for Open-Loop Attitude Estimation
Martin Brossard
Silvere Bonnabel
Axel Barrau
24
125
0
25 Feb 2020
Neuron Shapley: Discovering the Responsible Neurons
Neuron Shapley: Discovering the Responsible Neurons
Amirata Ghorbani
James Zou
FAtt
TDI
25
108
0
23 Feb 2020
Machine Learning in Python: Main developments and technology trends in
  data science, machine learning, and artificial intelligence
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
483
0
12 Feb 2020
Provably Efficient Online Hyperparameter Optimization with
  Population-Based Bandits
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
75
83
0
06 Feb 2020
When Wireless Security Meets Machine Learning: Motivation, Challenges,
  and Research Directions
When Wireless Security Meets Machine Learning: Motivation, Challenges, and Research Directions
Y. Sagduyu
Yi Shi
T. Erpek
William C. Headley
Bryse Flowers
G. Stantchev
Zhuo Lu
AAML
20
39
0
24 Jan 2020
Optimized Generic Feature Learning for Few-shot Classification across
  Domains
Optimized Generic Feature Learning for Few-shot Classification across Domains
Tonmoy Saikia
Thomas Brox
Cordelia Schmid
VLM
30
48
0
22 Jan 2020
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture
  Search
NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search
Xuanyi Dong
Yi Yang
43
695
0
02 Jan 2020
Robust Federated Learning Through Representation Matching and Adaptive
  Hyper-parameters
Robust Federated Learning Through Representation Matching and Adaptive Hyper-parameters
Hesham Mostafa
FedML
31
39
0
30 Dec 2019
FLAML: A Fast and Lightweight AutoML Library
FLAML: A Fast and Lightweight AutoML Library
Chi Wang
Qingyun Wu
Markus Weimer
Erkang Zhu
30
196
0
12 Nov 2019
Adversarial Deep Learning for Over-the-Air Spectrum Poisoning Attacks
Adversarial Deep Learning for Over-the-Air Spectrum Poisoning Attacks
Y. Sagduyu
Yi Shi
T. Erpek
AAML
25
83
0
01 Nov 2019
DeepWiFi: Cognitive WiFi with Deep Learning
DeepWiFi: Cognitive WiFi with Deep Learning
Kemal Davaslioglu
S. Soltani
T. Erpek
Y. Sagduyu
15
45
0
29 Oct 2019
BANANAS: Bayesian Optimization with Neural Architectures for Neural
  Architecture Search
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search
Colin White
Willie Neiswanger
Yash Savani
BDL
42
313
0
25 Oct 2019
ReNAS:Relativistic Evaluation of Neural Architecture Search
ReNAS:Relativistic Evaluation of Neural Architecture Search
Yixing Xu
Yunhe Wang
Avishkar Bhoopchand
Christopher Mattern
A. Grabska-Barwinska
Chunjing Xu
Chang Xu
27
82
0
30 Sep 2019
Towards modular and programmable architecture search
Towards modular and programmable architecture search
Renato M. P. Negrinho
Darshan Patil
Nghia T. Le
Daniel C. Ferreira
Matthew R. Gormley
Geoffrey J. Gordon
24
26
0
30 Sep 2019
Learning search spaces for Bayesian optimization: Another view of
  hyperparameter transfer learning
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
27
96
0
27 Sep 2019
AutoML: A Survey of the State-of-the-Art
AutoML: A Survey of the State-of-the-Art
Xin He
Kaiyong Zhao
Xiaowen Chu
20
1,420
0
02 Aug 2019
Hyperparameter Optimisation with Early Termination of Poor Performers
Hyperparameter Optimisation with Early Termination of Poor Performers
D. Marinov
Daniel Karapetyan
11
10
0
19 Jul 2019
Automated Machine Learning in Practice: State of the Art and Recent
  Results
Automated Machine Learning in Practice: State of the Art and Recent Results
Lukas Tuggener
Mohammadreza Amirian
Katharina Rombach
Stefan Lörwald
Anastasia Varlet
Christian Westermann
Thilo Stadelmann
21
63
0
19 Jul 2019
Exploration by Optimisation in Partial Monitoring
Exploration by Optimisation in Partial Monitoring
Tor Lattimore
Csaba Szepesvári
28
38
0
12 Jul 2019
AutoCompress: An Automatic DNN Structured Pruning Framework for
  Ultra-High Compression Rates
AutoCompress: An Automatic DNN Structured Pruning Framework for Ultra-High Compression Rates
Ning Liu
Xiaolong Ma
Zhiyuan Xu
Yanzhi Wang
Jian Tang
Jieping Ye
40
183
0
06 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural
  Network Training
Near-Optimal Glimpse Sequences for Improved Hard Attention Neural Network Training
William Harvey
Michael Teng
Frank Wood
31
4
0
13 Jun 2019
Model Similarity Mitigates Test Set Overuse
Model Similarity Mitigates Test Set Overuse
Horia Mania
John Miller
Ludwig Schmidt
Moritz Hardt
Benjamin Recht
20
50
0
29 May 2019
The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective
  System Development
The Machine Learning Bazaar: Harnessing the ML Ecosystem for Effective System Development
Micah J. Smith
Carles Sala Cladellas
James Max Kanter
K. Veeramachaneni
24
49
0
22 May 2019
Which Tasks Should Be Learned Together in Multi-task Learning?
Which Tasks Should Be Learned Together in Multi-task Learning?
Trevor Scott Standley
Amir Zamir
Dawn Chen
Leonidas J. Guibas
Jitendra Malik
Silvio Savarese
24
502
0
18 May 2019
CrossTrainer: Practical Domain Adaptation with Loss Reweighting
CrossTrainer: Practical Domain Adaptation with Loss Reweighting
Justin Chen
Edward Gan
Kexin Rong
S. Suri
Peter Bailis
22
4
0
07 May 2019
The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning
  Rate Procedure For Least Squares
The Step Decay Schedule: A Near Optimal, Geometrically Decaying Learning Rate Procedure For Least Squares
Rong Ge
Sham Kakade
Rahul Kidambi
Praneeth Netrapalli
34
149
0
29 Apr 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
25
86
0
26 Apr 2019
Reducing The Search Space For Hyperparameter Optimization Using Group
  Sparsity
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
C. Hegde
19
11
0
24 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
33
128
0
17 Apr 2019
Hyper-Parameter Tuning for the (1+(λ,λ)) GA
Hyper-Parameter Tuning for the (1+(λ,λ)) GA
Nguyen Dang
Carola Doerr
15
21
0
09 Apr 2019
A Survey on Practical Applications of Multi-Armed and Contextual Bandits
A Survey on Practical Applications of Multi-Armed and Contextual Bandits
Djallel Bouneffouf
Irina Rish
11
119
0
02 Apr 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
29
174
0
15 Mar 2019
NAS-Bench-101: Towards Reproducible Neural Architecture Search
NAS-Bench-101: Towards Reproducible Neural Architecture Search
Chris Ying
Aaron Klein
Esteban Real
Eric Christiansen
Kevin Patrick Murphy
Frank Hutter
12
672
0
25 Feb 2019
Fast Hyperparameter Tuning using Bayesian Optimization with Directional
  Derivatives
Fast Hyperparameter Tuning using Bayesian Optimization with Directional Derivatives
Tinu Theckel Joy
Santu Rana
Sunil R. Gupta
Svetha Venkatesh
21
55
0
06 Feb 2019
A System for Massively Parallel Hyperparameter Tuning
A System for Massively Parallel Hyperparameter Tuning
Liam Li
Kevin G. Jamieson
Afshin Rostamizadeh
Ekaterina Gonina
Moritz Hardt
Benjamin Recht
Ameet Talwalkar
24
372
0
13 Oct 2018
Safe Grid Search with Optimal Complexity
Safe Grid Search with Optimal Complexity
Eugène Ndiaye
Tam Le
Olivier Fercoq
Joseph Salmon
Ichiro Takeuchi
38
45
0
12 Oct 2018
On Kernel Derivative Approximation with Random Fourier Features
On Kernel Derivative Approximation with Random Fourier Features
Z. Szabó
Bharath K. Sriperumbudur
32
12
0
11 Oct 2018
CHOPT : Automated Hyperparameter Optimization Framework for Cloud-Based
  Machine Learning Platforms
CHOPT : Automated Hyperparameter Optimization Framework for Cloud-Based Machine Learning Platforms
Jingwoong Kim
Minkyu Kim
Heungseok Park
Ernar Kusdavletov
Dongjun Lee
A. Kim
Ji-Hoon Kim
Jung-Woo Ha
Nako Sung
28
14
0
08 Oct 2018
OBOE: Collaborative Filtering for AutoML Model Selection
OBOE: Collaborative Filtering for AutoML Model Selection
Chengrun Yang
Yuji Akimoto
Dae Won Kim
Madeleine Udell
18
100
0
09 Aug 2018
Teacher Guided Architecture Search
Teacher Guided Architecture Search
P. Bashivan
Mark Tensen
J. DiCarlo
3DV
27
27
0
04 Aug 2018
Tune: A Research Platform for Distributed Model Selection and Training
Tune: A Research Platform for Distributed Model Selection and Training
Richard Liaw
Eric Liang
Robert Nishihara
Philipp Moritz
Joseph E. Gonzalez
Ion Stoica
19
881
0
13 Jul 2018
Bandit-Based Monte Carlo Optimization for Nearest Neighbors
Bandit-Based Monte Carlo Optimization for Nearest Neighbors
Vivek Bagaria
Tavor Z. Baharav
G. Kamath
David Tse
13
12
0
21 May 2018
Previous
123456
Next