ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2001.08883
12
39

When Wireless Security Meets Machine Learning: Motivation, Challenges, and Research Directions

24 January 2020
Y. Sagduyu
Yi Shi
T. Erpek
William C. Headley
Bryse Flowers
G. Stantchev
Zhuo Lu
    AAML
ArXivPDFHTML
Abstract

Wireless systems are vulnerable to various attacks such as jamming and eavesdropping due to the shared and broadcast nature of wireless medium. To support both attack and defense strategies, machine learning (ML) provides automated means to learn from and adapt to wireless communication characteristics that are hard to capture by hand-crafted features and models. This article discusses motivation, background, and scope of research efforts that bridge ML and wireless security. Motivated by research directions surveyed in the context of ML for wireless security, ML-based attack and defense solutions and emerging adversarial ML techniques in the wireless domain are identified along with a roadmap to foster research efforts in bridging ML and wireless security.

View on arXiv
Comments on this paper