Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.06560
Cited By
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
21 March 2016
Lisha Li
Kevin G. Jamieson
Giulia DeSalvo
Afshin Rostamizadeh
Ameet Talwalkar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization"
50 / 262 papers shown
Title
AutoBERT-Zero: Evolving BERT Backbone from Scratch
Jiahui Gao
Hang Xu
Han Shi
Xiaozhe Ren
Philip L. H. Yu
Xiaodan Liang
Xin Jiang
Zhenguo Li
21
37
0
15 Jul 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
448
0
13 Jul 2021
Remote Blood Oxygen Estimation From Videos Using Neural Networks
J. Mathew
Xin Tian
Min Wu
Chau-Wai Wong
31
37
0
11 Jul 2021
SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo
Thomas Kollar
Michael Laskey
Kevin Stone
Brijen Thananjeyan
Mark Tjersland
48
25
0
30 Jun 2021
Learning from an Exploring Demonstrator: Optimal Reward Estimation for Bandits
Wenshuo Guo
Kumar Krishna Agrawal
Aditya Grover
Vidya Muthukumar
A. Pananjady
16
8
0
28 Jun 2021
Multi-objective Asynchronous Successive Halving
Robin Schmucker
Michele Donini
Muhammad Bilal Zafar
David Salinas
Cédric Archambeau
32
23
0
23 Jun 2021
Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
Gaurav Menghani
VLM
MedIm
23
366
0
16 Jun 2021
HPO-B: A Large-Scale Reproducible Benchmark for Black-Box HPO based on OpenML
Sebastian Pineda Arango
H. Jomaa
Martin Wistuba
Josif Grabocka
24
55
0
11 Jun 2021
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
E. Lee
David Eriksson
Valerio Perrone
Matthias Seeger
35
22
0
10 Jun 2021
A multi-objective perspective on jointly tuning hardware and hyperparameters
David Salinas
Valerio Perrone
Olivier Cruchant
Cédric Archambeau
32
13
0
10 Jun 2021
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
M. Khodak
Renbo Tu
Tian Li
Liam Li
Maria-Florina Balcan
Virginia Smith
Ameet Talwalkar
FedML
43
78
0
08 Jun 2021
JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data
Kourosh Hakhamaneshi
Pieter Abbeel
Vladimir M. Stojanović
Aditya Grover
27
10
0
02 Jun 2021
A hyperparameter-tuning approach to automated inverse planning
Kelsey Maass
Aleksandr Aravkin
Minsun Kim
19
3
0
14 May 2021
Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization
Julia Guerrero-Viu
Sven Hauns
Sergio Izquierdo
Guilherme Miotto
Simon Schrodi
André Biedenkapp
T. Elsken
Difan Deng
Marius Lindauer
Frank Hutter
AI4CE
17
25
0
03 May 2021
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020
Ryan Turner
David Eriksson
M. McCourt
J. Kiili
Eero Laaksonen
Zhen Xu
Isabelle M Guyon
BDL
30
289
0
20 Apr 2021
Rethinking Neural Operations for Diverse Tasks
Nicholas Roberts
M. Khodak
Tri Dao
Liam Li
Christopher Ré
Ameet Talwalkar
AI4CE
36
22
0
29 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
29
93
0
02 Mar 2021
On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning
Bangnig Zhang
Raghunandan Rajan
Luis Pineda
Nathan Lambert
André Biedenkapp
Kurtland Chua
Frank Hutter
Roberto Calandra
26
100
0
26 Feb 2021
CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan
Kaiqiang Song
Z. Feng
Mi Zhang
22
24
0
14 Feb 2021
Towards Large Scale Automated Algorithm Design by Integrating Modular Benchmarking Frameworks
Amine Aziz-Alaoui
Carola Doerr
Johann Dréo
16
12
0
12 Feb 2021
Explaining Inference Queries with Bayesian Optimization
Brandon Lockhart
Jinglin Peng
Weiyuan Wu
Jiannan Wang
Eugene Wu
21
7
0
10 Feb 2021
Hyperboost: Hyperparameter Optimization by Gradient Boosting surrogate models
Jeroen van Hoof
Joaquin Vanschoren
BDL
38
9
0
06 Jan 2021
HyperMorph: Amortized Hyperparameter Learning for Image Registration
Andrew Hoopes
Malte Hoffmann
Bruce Fischl
John Guttag
Adrian Dalca
39
128
0
04 Jan 2021
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
45
16
0
15 Dec 2020
Are We Ready For Learned Cardinality Estimation?
Xiaoying Wang
Changbo Qu
Weiyuan Wu
Jiannan Wang
Qingqing Zhou
37
113
0
12 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
DORB: Dynamically Optimizing Multiple Rewards with Bandits
Ramakanth Pasunuru
Han Guo
Joey Tianyi Zhou
OffRL
32
6
0
15 Nov 2020
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud via Sub-Sampling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
22
18
0
09 Nov 2020
Resource-Aware Pareto-Optimal Automated Machine Learning Platform
Yao Yang
Andrew Nam
M. Nasr-Azadani
Teresa Tung
16
6
0
30 Oct 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
Stochastic analysis of heterogeneous porous material with modified neural architecture search (NAS) based physics-informed neural networks using transfer learning
Hongwei Guo
X. Zhuang
Timon Rabczuk
20
82
0
03 Oct 2020
A transfer learning metamodel using artificial neural networks applied to natural convection flows in enclosures
M. Ashouri
Alireza Hashemi
AI4CE
8
2
0
28 Aug 2020
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
Li Yang
Abdallah Shami
AI4CE
20
2,032
0
30 Jul 2020
Image-driven discriminative and generative machine learning algorithms for establishing microstructure-processing relationships
Wufei Ma
E. Kautz
Arun Baskaran
Aritra Chowdhury
V. Joshi
B. Yener
D. Lewis
AI4CE
37
42
0
27 Jul 2020
An Asymptotically Optimal Multi-Armed Bandit Algorithm and Hyperparameter Optimization
Yimin Huang
Yujun Li
Hanrong Ye
Zhenguo Li
Zhihua Zhang
27
7
0
11 Jul 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
Auto-CASH: Autonomous Classification Algorithm Selection with Deep Q-Network
Tianyu Mu
Hongzhi Wang
Chunnan Wang
Zheng Liang
15
1
0
07 Jul 2020
Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search
Linnan Wang
Rodrigo Fonseca
Yuandong Tian
40
126
0
01 Jul 2020
Fast and Low-cost Search for Efficient Cloud Configurations for HPC Workloads
V. M. Rosário
Thais A. Silva Camacho
O. O. Napoli
E. Borin
11
5
0
28 Jun 2020
Hippo: Taming Hyper-parameter Optimization of Deep Learning with Stage Trees
Ahnjae Shin
Do Yoon Kim
Joo Seong Jeong
Byung-Gon Chun
12
4
0
22 Jun 2020
Missing Features Reconstruction Using a Wasserstein Generative Adversarial Imputation Network
Magda Friedjungová
Daniel Vasata
Maksym Balatsko
M. Jiřina
DiffM
SyDa
GAN
14
12
0
21 Jun 2020
Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization
Xingchen Ma
Matthew B. Blaschko
21
7
0
21 Jun 2020
Solving Constrained CASH Problems with ADMM
Parikshit Ram
Sijia Liu
Deepak Vijaykeerthi
Dakuo Wang
Djallel Bouneffouf
Gregory Bramble
Horst Samulowitz
Alexander G. Gray
33
3
0
17 Jun 2020
A Multi-Phase Approach for Product Hierarchy Forecasting in Supply Chain Management: Application to MonarchFx Inc
Sajjad Taghiyeh
D. Lengacher
Amir Hossein Sadeghi
Amirreza Sahebifakhrabad
R. Handfield
AI4TS
28
15
0
16 Jun 2020
Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors
C. Coelho
Aki Kuusela
Shane Li
Zhuang Hao
T. Aarrestad
Vladimir Loncar
J. Ngadiuba
M. Pierini
Adrian Alan Pol
S. Summers
MQ
32
175
0
15 Jun 2020
Depth Uncertainty in Neural Networks
Javier Antorán
J. Allingham
José Miguel Hernández-Lobato
UQCV
OOD
BDL
41
100
0
15 Jun 2020
Optimal Transport Kernels for Sequential and Parallel Neural Architecture Search
Vu-Linh Nguyen
Tam Le
M. Yamada
Michael A. Osborne
AI4TS
26
37
0
13 Jun 2020
NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language Processing
Nikita Klyuchnikov
I. Trofimov
Ekaterina Artemova
Mikhail Salnikov
M. Fedorov
Evgeny Burnaev
VLM
13
101
0
12 Jun 2020
Few-shot Neural Architecture Search
Yiyang Zhao
Linnan Wang
Yuandong Tian
Rodrigo Fonseca
Tian Guo
23
90
0
11 Jun 2020
BanditPAM: Almost Linear Time
k
k
k
-Medoids Clustering via Multi-Armed Bandits
Mo Tiwari
Martin Jinye Zhang
James Mayclin
Sebastian Thrun
Chris Piech
Ilan Shomorony
25
11
0
11 Jun 2020
Previous
1
2
3
4
5
6
Next