ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2103.15798
31
22

Rethinking Neural Operations for Diverse Tasks

29 March 2021
Nicholas Roberts
M. Khodak
Tri Dao
Liam Li
Christopher Ré
Ameet Talwalkar
    AI4CE
ArXivPDFHTML
Abstract

An important goal of AutoML is to automate-away the design of neural networks on new tasks in under-explored domains. Motivated by this goal, we study the problem of enabling users to discover the right neural operations given data from their specific domain. We introduce a search space of operations called XD-Operations that mimic the inductive bias of standard multi-channel convolutions while being much more expressive: we prove that it includes many named operations across multiple application areas. Starting with any standard backbone such as ResNet, we show how to transform it into a search space over XD-operations and how to traverse the space using a simple weight-sharing scheme. On a diverse set of tasks -- solving PDEs, distance prediction for protein folding, and music modeling -- our approach consistently yields models with lower error than baseline networks and often even lower error than expert-designed domain-specific approaches.

View on arXiv
Comments on this paper