ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.06212
  4. Cited By
Evaluation of a Tree-based Pipeline Optimization Tool for Automating
  Data Science

Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science

20 March 2016
Randal S. Olson
Nathan Bartley
Ryan J. Urbanowicz
J. Moore
ArXiv (abs)PDFHTML

Papers citing "Evaluation of a Tree-based Pipeline Optimization Tool for Automating Data Science"

50 / 115 papers shown
Title
An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization
An experimental survey and Perspective View on Meta-Learning for Automated Algorithms Selection and Parametrization
Moncef Garouani
75
0
0
08 Apr 2025
DML-RAM: Deep Multimodal Learning Framework for Robotic Arm Manipulation using Pre-trained Models
DML-RAM: Deep Multimodal Learning Framework for Robotic Arm Manipulation using Pre-trained Models
Sathish Kumar
Swaroop Damodaran
Naveen Kumar Kuruba
S. Jha
Arvind Ramanathan
41
1
0
04 Apr 2025
EDCA - An Evolutionary Data-Centric AutoML Framework for Efficient Pipelines
EDCA - An Evolutionary Data-Centric AutoML Framework for Efficient Pipelines
Joana Simões
João Correia
465
0
0
06 Mar 2025
Online Meta-learning for AutoML in Real-time (OnMAR)
Online Meta-learning for AutoML in Real-time (OnMAR)
Mia Gerber
Anna Sergeevna Bosman
J. D. Villiers
OffRL
89
0
0
27 Feb 2025
Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms
Evolving Hard Maximum Cut Instances for Quantum Approximate Optimization Algorithms
Shuaiqun Pan
Yash J. Patel
Aneta Neumann
Frank Neumann
Thomas Bäck
Hao Wang
167
0
0
30 Jan 2025
Can Models Help Us Create Better Models? Evaluating LLMs as Data
  Scientists
Can Models Help Us Create Better Models? Evaluating LLMs as Data Scientists
Michał Pietruszka
Łukasz Borchmann
Aleksander Jędrosz
Paweł Morawiecki
ELM
42
1
0
30 Oct 2024
Regularized Neural Ensemblers
Regularized Neural Ensemblers
Sebastian Pineda Arango
Maciej Janowski
Lennart Purucker
Arber Zela
Frank Hutter
Josif Grabocka
UQCV
95
0
0
06 Oct 2024
forester: A Tree-Based AutoML Tool in R
forester: A Tree-Based AutoML Tool in R
Hubert Ruczyński
Anna Kozak
87
1
0
07 Sep 2024
Flexora: Flexible Low Rank Adaptation for Large Language Models
Flexora: Flexible Low Rank Adaptation for Large Language Models
Chenxing Wei
Yao Shu
Y. He
Fei Richard Yu
AI4CE
96
4
0
20 Aug 2024
Towards Evolutionary-based Automated Machine Learning for Small Molecule
  Pharmacokinetic Prediction
Towards Evolutionary-based Automated Machine Learning for Small Molecule Pharmacokinetic Prediction
Alex G. C. de Sá
David B. Ascher
64
1
0
01 Aug 2024
Can time series forecasting be automated? A benchmark and analysis
Can time series forecasting be automated? A benchmark and analysis
Anvitha Thirthapura Sreedhara
Joaquin Vanschoren
AI4TS
40
0
0
23 Jul 2024
Pairwise Difference Learning for Classification
Pairwise Difference Learning for Classification
Mohamed Karim Belaid
Maximilian Rabus
Eyke Hüllermeier
80
2
0
28 Jun 2024
AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for
  Retrieval-Augmented Generation
AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented Generation
Jia Fu
Xiaoting Qin
Fangkai Yang
Lu Wang
Jue Zhang
Qingwei Lin
Yubo Chen
Dongmei Zhang
Saravan Rajmohan
Qi Zhang
69
6
0
27 Jun 2024
A Comparison of Recent Algorithms for Symbolic Regression to Genetic
  Programming
A Comparison of Recent Algorithms for Symbolic Regression to Genetic Programming
Yousef A. Radwan
G. Kronberger
Stephan M. Winkler
OffRL
111
4
0
05 Jun 2024
Brain-Shift: Unsupervised Pseudo-Healthy Brain Synthesis for Novel
  Biomarker Extraction in Chronic Subdural Hematoma
Brain-Shift: Unsupervised Pseudo-Healthy Brain Synthesis for Novel Biomarker Extraction in Chronic Subdural Hematoma
Baris Imre
Elina Thibeau-Sutre
Jorieke Reimer
Kuan Kho
J. Wolterink
28
0
0
28 Mar 2024
Evolving machine learning workflows through interactive AutoML
Evolving machine learning workflows through interactive AutoML
Rafael Barbudo
Aurora Ramírez
José Raúl Romero
40
2
0
28 Feb 2024
Grammar-based evolutionary approach for automated workflow composition
  with domain-specific operators and ensemble diversity
Grammar-based evolutionary approach for automated workflow composition with domain-specific operators and ensemble diversity
Rafael Barbudo
Aurora Ramírez
José Raúl Romero
45
0
0
03 Feb 2024
Automated Machine Learning for Positive-Unlabelled Learning
Automated Machine Learning for Positive-Unlabelled Learning
Jack D. Saunders
A. A. Freitas
27
0
0
12 Jan 2024
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc
  Ensemble Selection in AutoML
Q(D)O-ES: Population-based Quality (Diversity) Optimisation for Post Hoc Ensemble Selection in AutoML
Lennart Purucker
Lennart Schneider
Marie Anastacio
Joeran Beel
B. Bischl
Holger Hoos
86
4
0
17 Jul 2023
Automatic MILP Solver Configuration By Learning Problem Similarities
Automatic MILP Solver Configuration By Learning Problem Similarities
Abdelrahman I. Hosny
Sherief Reda
70
7
0
02 Jul 2023
VeML: An End-to-End Machine Learning Lifecycle for Large-scale and
  High-dimensional Data
VeML: An End-to-End Machine Learning Lifecycle for Large-scale and High-dimensional Data
Van-Duc Le
Tien-Cuong Bui
Wen-Syan Li
VLMMLLM
69
0
0
25 Apr 2023
Tracing and Visualizing Human-ML/AI Collaborative Processes through
  Artifacts of Data Work
Tracing and Visualizing Human-ML/AI Collaborative Processes through Artifacts of Data Work
Jennifer Rogers
Anamaria Crisan
84
7
0
05 Apr 2023
AutoEn: An AutoML method based on ensembles of predefined Machine
  Learning pipelines for supervised Traffic Forecasting
AutoEn: An AutoML method based on ensembles of predefined Machine Learning pipelines for supervised Traffic Forecasting
Juan S. Angarita-Zapata
A. Masegosa
I. Triguero
36
0
0
19 Mar 2023
Can Fairness be Automated? Guidelines and Opportunities for
  Fairness-aware AutoML
Can Fairness be Automated? Guidelines and Opportunities for Fairness-aware AutoML
Hilde J. P. Weerts
Florian Pfisterer
Matthias Feurer
Katharina Eggensperger
Eddie Bergman
Noor H. Awad
Joaquin Vanschoren
Mykola Pechenizkiy
B. Bischl
Frank Hutter
FaML
100
19
0
15 Mar 2023
The Planner Optimization Problem: Formulations and Frameworks
The Planner Optimization Problem: Formulations and Frameworks
Yiyuan Lee
Katie Lee
Panpan Cai
David Hsu
Lydia E. Kavraki
75
1
0
12 Mar 2023
Anomalous NO2 emitting ship detection with TROPOMI satellite data and
  machine learning
Anomalous NO2 emitting ship detection with TROPOMI satellite data and machine learning
Solomiia Kurchaba
J. Vliet
F. Verbeek
C. Veenman
34
3
0
24 Feb 2023
AutoDOViz: Human-Centered Automation for Decision Optimization
AutoDOViz: Human-Centered Automation for Decision Optimization
D. Weidele
S. Afzal
Abel N. Valente
Cole Makuch
Owen Cornec
...
Radu Marinescu
Paulito Palmes
Elizabeth M. Daly
Loraine Franke
D. Haehn
OffRL
74
4
0
19 Feb 2023
Neural Architecture Search: Insights from 1000 Papers
Neural Architecture Search: Insights from 1000 Papers
Colin White
Mahmoud Safari
R. Sukthanker
Binxin Ru
T. Elsken
Arber Zela
Debadeepta Dey
Frank Hutter
3DVAI4CE
129
142
0
20 Jan 2023
Fiduciary Responsibility: Facilitating Public Trust in Automated
  Decision Making
Fiduciary Responsibility: Facilitating Public Trust in Automated Decision Making
Shannon B. Harper
Eric S. Weber
71
0
0
06 Jan 2023
AutoPV: Automated photovoltaic forecasts with limited information using
  an ensemble of pre-trained models
AutoPV: Automated photovoltaic forecasts with limited information using an ensemble of pre-trained models
Stefan Meisenbacher
Benedikt Heidrich
Tim Martin
Ralf Mikut
V. Hagenmeyer
36
9
0
13 Dec 2022
Benchmarking AutoML algorithms on a collection of synthetic
  classification problems
Benchmarking AutoML algorithms on a collection of synthetic classification problems
P. Ribeiro
Patryk Orzechowski
Joost B. Wagenaar
J. H. Moore
34
2
0
06 Dec 2022
An Empirical Study on the Usage of Automated Machine Learning Tools
An Empirical Study on the Usage of Automated Machine Learning Tools
Forough Majidi
Moses Openja
Foutse Khomh
Heng Li
82
14
0
28 Aug 2022
A Survey of Open Source Automation Tools for Data Science Predictions
A Survey of Open Source Automation Tools for Data Science Predictions
Nicholas Hoell
63
0
0
24 Aug 2022
AMLB: an AutoML Benchmark
AMLB: an AutoML Benchmark
Pieter Gijsbers
Marcos L. P. Bueno
Stefan Coors
E. LeDell
Sébastien Poirier
Janek Thomas
B. Bischl
Joaquin Vanschoren
84
58
0
25 Jul 2022
ARLO: A Framework for Automated Reinforcement Learning
ARLO: A Framework for Automated Reinforcement Learning
Marco Mussi
Davide Lombarda
Alberto Maria Metelli
F. Trovò
Marcello Restelli
OffRL
78
4
0
20 May 2022
Efficient Automated Deep Learning for Time Series Forecasting
Efficient Automated Deep Learning for Time Series Forecasting
Difan Deng
Florian Karl
Frank Hutter
Bernd Bischl
Marius Lindauer
AI4TS
139
16
0
11 May 2022
AutoMLBench: A Comprehensive Experimental Evaluation of Automated
  Machine Learning Frameworks
AutoMLBench: A Comprehensive Experimental Evaluation of Automated Machine Learning Frameworks
Hassan Eldeeb
Mohamed Maher
Radwa El Shawi
Sherif Sakr
85
18
0
18 Apr 2022
Online AutoML: An adaptive AutoML framework for online learning
Online AutoML: An adaptive AutoML framework for online learning
B. Celik
Prabhant Singh
Joaquin Vanschoren
61
23
0
24 Jan 2022
Automated Graph Machine Learning: Approaches, Libraries, Benchmarks and
  Directions
Automated Graph Machine Learning: Approaches, Libraries, Benchmarks and Directions
Xin Wang
Ziwei Zhang
Haoyang Li
Wenwu Zhu
129
2
0
04 Jan 2022
AutoDES: AutoML Pipeline Generation of Classification with Dynamic
  Ensemble Strategy Selection
AutoDES: AutoML Pipeline Generation of Classification with Dynamic Ensemble Strategy Selection
Yunpu Zhao
Rui Zhang
Xiaqing Li
57
3
0
01 Jan 2022
Manas: Mining Software Repositories to Assist AutoML
Manas: Mining Software Repositories to Assist AutoML
Giang Nguyen
Johir Islam
Rangeet Pan
Hridesh Rajan
63
15
0
06 Dec 2021
Fast and Informative Model Selection using Learning Curve
  Cross-Validation
Fast and Informative Model Selection using Learning Curve Cross-Validation
F. Mohr
Jan N. van Rijn
57
32
0
27 Nov 2021
Designing the Architecture of a Convolutional Neural Network
  Automatically for Diabetic Retinopathy Diagnosis
Designing the Architecture of a Convolutional Neural Network Automatically for Diabetic Retinopathy Diagnosis
Fahman Saeed
M. Hussain
Hatim Aboalsamh
Fadwa Al Adel
A. Owaifeer
106
6
0
08 Oct 2021
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
  Optimization
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization
Marius Lindauer
Katharina Eggensperger
Matthias Feurer
André Biedenkapp
Difan Deng
C. Benjamins
Tim Ruhopf
René Sass
Frank Hutter
136
349
0
20 Sep 2021
Automated Machine Learning, Bounded Rationality, and Rational
  Metareasoning
Automated Machine Learning, Bounded Rationality, and Rational Metareasoning
Eyke Hüllermeier
F. Mohr
Alexander Tornede
Marcel Wever
LRM
88
3
0
10 Sep 2021
Man versus Machine: AutoML and Human Experts' Role in Phishing Detection
Man versus Machine: AutoML and Human Experts' Role in Phishing Detection
R. Purwanto
Arindam Pal
Alan Blair
S. Jha
51
1
0
27 Aug 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
250
514
0
13 Jul 2021
Multi-level Stress Assessment from ECG in a Virtual Reality Environment
  using Multimodal Fusion
Multi-level Stress Assessment from ECG in a Virtual Reality Environment using Multimodal Fusion
Zeeshan Ahmad
S. Rabbani
Muhammad Rehman Zafar
Syem Ishaque
Sri Krishnan
N. Khan
59
15
0
09 Jul 2021
Designing Machine Learning Pipeline Toolkit for AutoML Surrogate
  Modeling Optimization
Designing Machine Learning Pipeline Toolkit for AutoML Surrogate Modeling Optimization
Paulito Palmes
Akihiro Kishimoto
Radu Marinescu
Parikshit Ram
Elizabeth M. Daly
TPM
41
2
0
02 Jul 2021
Automated Machine Learning Techniques for Data Streams
Automated Machine Learning Techniques for Data Streams
Alexandru-Ionut Imbrea
AIFinAI4TS
63
8
0
14 Jun 2021
123
Next