LIVEJoin the current RTAI Connect sessionJoin now

24
2

Designing Machine Learning Pipeline Toolkit for AutoML Surrogate Modeling Optimization

Abstract

The pipeline optimization problem in machine learning requires simultaneous optimization of pipeline structures and parameter adaptation of their elements. Having an elegant way to express these structures can help lessen the complexity in the management and analysis of their performances together with the different choices of optimization strategies. With these issues in mind, we created the AutoMLPipeline (AMLP) toolkit which facilitates the creation and evaluation of complex machine learning pipeline structures using simple expressions. We use AMLP to find optimal pipeline signatures, datamine them, and use these datamined features to speed-up learning and prediction. We formulated a two-stage pipeline optimization with surrogate modeling in AMLP which outperforms other AutoML approaches with a 4-hour time budget in less than 5 minutes of AMLP computation time.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.