Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.04245
Cited By
A Variational Perspective on Accelerated Methods in Optimization
14 March 2016
Andre Wibisono
Ashia Wilson
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Variational Perspective on Accelerated Methods in Optimization"
50 / 53 papers shown
Title
Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals
Alexander Mielke
Jia Jie Zhu
66
1
0
28 Jan 2025
Distributed Event-Based Learning via ADMM
Güner Dilsad Er
Sebastian Trimpe
Michael Muehlebach
FedML
44
2
0
17 May 2024
A General Continuous-Time Formulation of Stochastic ADMM and Its Variants
Chris Junchi Li
37
0
0
22 Apr 2024
Leveraging Continuous Time to Understand Momentum When Training Diagonal Linear Networks
Hristo Papazov
Scott Pesme
Nicolas Flammarion
38
5
0
08 Mar 2024
GAD-PVI: A General Accelerated Dynamic-Weight Particle-Based Variational Inference Framework
Fangyikang Wang
Huminhao Zhu
Chao Zhang
Han Zhao
Hui Qian
26
5
0
27 Dec 2023
Quantum Langevin Dynamics for Optimization
Zherui Chen
Yuchen Lu
Hao Wang
Yizhou Liu
Tongyang Li
AI4CE
21
9
0
27 Nov 2023
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
32
5
0
06 Oct 2023
Towards Predicting Equilibrium Distributions for Molecular Systems with Deep Learning
Shuxin Zheng
Jiyan He
Chang-Shu Liu
Yu Shi
Ziheng Lu
...
Peiran Jin
Chi Chen
Frank Noé
Haiguang Liu
Tie-Yan Liu
AI4CE
27
41
0
08 Jun 2023
On Underdamped Nesterov's Acceleration
Shu Chen
Bin Shi
Ya-xiang Yuan
27
5
0
28 Apr 2023
Beyond first-order methods for non-convex non-concave min-max optimization
Abhijeet Vyas
Brian Bullins
31
1
0
17 Apr 2023
Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical and Recent Developments
Quoc Tran-Dinh
35
7
0
30 Mar 2023
Quantum Hamiltonian Descent
Jiaqi Leng
Ethan Hickman
Joseph Li
Xiaodi Wu
26
13
0
02 Mar 2023
Accelerated First-Order Optimization under Nonlinear Constraints
Michael Muehlebach
Michael I. Jordan
48
3
0
01 Feb 2023
Generalized Gradient Flows with Provable Fixed-Time Convergence and Fast Evasion of Non-Degenerate Saddle Points
Mayank Baranwal
Param Budhraja
V. Raj
A. Hota
33
2
0
07 Dec 2022
Towards Understanding GD with Hard and Conjugate Pseudo-labels for Test-Time Adaptation
Jun-Kun Wang
Andre Wibisono
35
7
0
18 Oct 2022
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
36
18
0
29 Sep 2022
Gradient Norm Minimization of Nesterov Acceleration:
o
(
1
/
k
3
)
o(1/k^3)
o
(
1/
k
3
)
Shu Chen
Bin Shi
Ya-xiang Yuan
33
15
0
19 Sep 2022
Conformal Mirror Descent with Logarithmic Divergences
Amanjit Kainth
Ting-Kam Leonard Wong
Frank Rudzicz
26
4
0
07 Sep 2022
Multilevel Geometric Optimization for Regularised Constrained Linear Inverse Problems
Sebastian Müller
Stefania Petra
Matthias Zisler
AI4CE
21
1
0
11 Jul 2022
Alternating Mirror Descent for Constrained Min-Max Games
Andre Wibisono
Molei Tao
Georgios Piliouras
29
14
0
08 Jun 2022
Perseus: A Simple and Optimal High-Order Method for Variational Inequalities
Tianyi Lin
Michael I. Jordan
25
10
0
06 May 2022
Geometric Methods for Sampling, Optimisation, Inference and Adaptive Agents
Alessandro Barp
Lancelot Da Costa
G. Francca
Karl J. Friston
Mark Girolami
Michael I. Jordan
G. Pavliotis
33
25
0
20 Mar 2022
A More Stable Accelerated Gradient Method Inspired by Continuous-Time Perspective
Yasong Feng
Weiguo Gao
23
0
0
09 Dec 2021
Breaking the Convergence Barrier: Optimization via Fixed-Time Convergent Flows
Param Budhraja
Mayank Baranwal
Kunal Garg
A. Hota
15
9
0
02 Dec 2021
No-Regret Dynamics in the Fenchel Game: A Unified Framework for Algorithmic Convex Optimization
Jun-Kun Wang
Jacob D. Abernethy
Kfir Y. Levy
27
21
0
22 Nov 2021
A Deterministic Sampling Method via Maximum Mean Discrepancy Flow with Adaptive Kernel
Yindong Chen
Yiwei Wang
Lulu Kang
Chun Liu
23
1
0
21 Nov 2021
Convergence and Stability of the Stochastic Proximal Point Algorithm with Momentum
J. Kim
Panos Toulis
Anastasios Kyrillidis
26
8
0
11 Nov 2021
On Constraints in First-Order Optimization: A View from Non-Smooth Dynamical Systems
Michael Muehlebach
Michael I. Jordan
42
18
0
17 Jul 2021
Revisiting the Role of Euler Numerical Integration on Acceleration and Stability in Convex Optimization
Peiyuan Zhang
Antonio Orvieto
Hadi Daneshmand
Thomas Hofmann
Roy S. Smith
27
9
0
23 Feb 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
31
25
0
04 Jan 2021
On dissipative symplectic integration with applications to gradient-based optimization
G. Francca
Michael I. Jordan
René Vidal
19
47
0
15 Apr 2020
Optimal anytime regret with two experts
Nicholas J. A. Harvey
Christopher Liaw
E. Perkins
Sikander Randhawa
6
16
0
20 Feb 2020
Augmented Normalizing Flows: Bridging the Gap Between Generative Flows and Latent Variable Models
Chin-Wei Huang
Laurent Dinh
Aaron Courville
DRL
31
87
0
17 Feb 2020
From Nesterov's Estimate Sequence to Riemannian Acceleration
Kwangjun Ahn
S. Sra
22
73
0
24 Jan 2020
Demon: Improved Neural Network Training with Momentum Decay
John Chen
Cameron R. Wolfe
Zhaoqi Li
Anastasios Kyrillidis
ODL
24
15
0
11 Oct 2019
Conjugate Gradients and Accelerated Methods Unified: The Approximate Duality Gap View
Jelena Diakonikolas
L. Orecchia
23
1
0
29 Jun 2019
Continuous Time Analysis of Momentum Methods
Nikola B. Kovachki
Andrew M. Stuart
23
32
0
10 Jun 2019
Theoretical guarantees for sampling and inference in generative models with latent diffusions
Belinda Tzen
Maxim Raginsky
DiffM
13
99
0
05 Mar 2019
Accelerated Flow for Probability Distributions
Amirhossein Taghvaei
P. Mehta
45
31
0
10 Jan 2019
Understanding the Acceleration Phenomenon via High-Resolution Differential Equations
Bin Shi
S. Du
Michael I. Jordan
Weijie J. Su
17
254
0
21 Oct 2018
Online Adaptive Methods, Universality and Acceleration
Kfir Y. Levy
A. Yurtsever
V. Cevher
ODL
28
88
0
08 Sep 2018
Towards Riemannian Accelerated Gradient Methods
Hongyi Zhang
S. Sra
13
53
0
07 Jun 2018
Direct Runge-Kutta Discretization Achieves Acceleration
J.N. Zhang
Aryan Mokhtari
S. Sra
Ali Jadbabaie
19
107
0
01 May 2018
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
29
178
0
22 Feb 2018
On Symplectic Optimization
M. Betancourt
Michael I. Jordan
Ashia Wilson
22
90
0
10 Feb 2018
Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent
Chi Jin
Praneeth Netrapalli
Michael I. Jordan
ODL
37
261
0
28 Nov 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
47
294
0
12 Jul 2017
Stochastic Methods for Composite and Weakly Convex Optimization Problems
John C. Duchi
Feng Ruan
15
126
0
24 Mar 2017
Stochastic Composite Least-Squares Regression with convergence rate O(1/n)
Nicolas Flammarion
Francis R. Bach
27
27
0
21 Feb 2017
Geometric descent method for convex composite minimization
Shixiang Chen
Shiqian Ma
Wei Liu
36
10
0
29 Dec 2016
1
2
Next