ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1702.06429
19
27

Stochastic Composite Least-Squares Regression with convergence rate O(1/n)

21 February 2017
Nicolas Flammarion
Francis R. Bach
ArXivPDFHTML
Abstract

We consider the minimization of composite objective functions composed of the expectation of quadratic functions and an arbitrary convex function. We study the stochastic dual averaging algorithm with a constant step-size, showing that it leads to a convergence rate of O(1/n) without strong convexity assumptions. This thus extends earlier results on least-squares regression with the Euclidean geometry to (a) all convex regularizers and constraints, and (b) all geome-tries represented by a Bregman divergence. This is achieved by a new proof technique that relates stochastic and deterministic recursions.

View on arXiv
Comments on this paper