Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1603.03236
Cited By
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
10 March 2016
James Townsend
Niklas Koep
S. Weichwald
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation"
50 / 51 papers shown
Title
Lie Group Symmetry Discovery and Enforcement Using Vector Fields
Ben Shaw
Sasidhar Kunapuli
Abram Magner
Kevin R. Moon
37
0
0
13 May 2025
Surrogate to Poincaré inequalities on manifolds for dimension reduction in nonlinear feature spaces
Anthony Nouy
Alexandre Pasco
47
0
0
03 May 2025
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
48
0
0
26 Apr 2025
Riemannian Optimization on Relaxed Indicator Matrix Manifold
Jinghui Yuan
Fangyuan Xie
Feiping Nie
Xuelong Li
77
0
0
26 Mar 2025
Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices
Thibault de Surrel
Fabien Lotte
Sylvain Chevallier
Florian Yger
67
0
0
03 Feb 2025
Manifold learning and optimization using tangent space proxies
Ryan A. Robinett
Lorenzo Orecchia
Samantha J. Riesenfeld
43
0
0
22 Jan 2025
Residual Deep Gaussian Processes on Manifolds
Kacper Wyrwal
Andreas Krause
Viacheslav Borovitskiy
BDL
57
0
0
31 Oct 2024
A Metric-based Principal Curve Approach for Learning One-dimensional Manifold
E. Cui
18
0
0
20 May 2024
Cluster Exploration using Informative Manifold Projections
Stavros Gerolymatos
Xenophon Evangelopoulos
V. Gusev
John Y. Goulermas
19
0
0
26 Sep 2023
A survey of manifold learning and its applications for multimedia
Hannes Fassold
47
1
0
08 Sep 2023
Towards frugal unsupervised detection of subtle abnormalities in medical imaging
Geoffroy Oudoumanessah
Carole Lartizien
M. Dojat
Florence Forbes
MedIm
25
2
0
04 Sep 2023
Gradient-Based Spectral Embeddings of Random Dot Product Graphs
Marcelo Fiori
Bernardo Marenco
Federico Larroca
P. Bermolen
Gonzalo Mateos
BDL
29
3
0
25 Jul 2023
Medoid splits for efficient random forests in metric spaces
Matthieu Bulté
Helle Sorensen
16
4
0
29 Jun 2023
Alignment of Density Maps in Wasserstein Distance
A. Singer
Ruiyi Yang
33
8
0
21 May 2023
Wasserstein Gradient Flows for Optimizing Gaussian Mixture Policies
Hanna Ziesche
Leonel Rozo
26
5
0
17 May 2023
Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization
Yian Deng
Tingting Mu
26
1
0
22 Feb 2023
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
30
6
0
16 Feb 2023
Riemannian Optimization for Variance Estimation in Linear Mixed Models
L. Sembach
J. P. Burgard
Volker Schulz
9
0
0
18 Dec 2022
A Bi-level Nonlinear Eigenvector Algorithm for Wasserstein Discriminant Analysis
Dong Min Roh
Z. Bai
Ren-Cang Li
18
1
0
21 Nov 2022
Finding the global semantic representation in GAN through Frechet Mean
Jaewoong Choi
Geonho Hwang
Hyunsoo Cho
Myung-joo Kang
GAN
DRL
32
2
0
11 Oct 2022
Stochastic Neuromorphic Circuits for Solving MAXCUT
Bradley H. Theilman
Yipu Wang
Ojas D. Parekh
William M. Severa
John Smith
J. Aimone
19
7
0
05 Oct 2022
Manifold Free Riemannian Optimization
B. Shustin
H. Avron
B. Sober
33
2
0
07 Sep 2022
Human-to-Robot Manipulability Domain Adaptation with Parallel Transport and Manifold-Aware ICP
Anna Reithmeir
Luis F. C. Figueredo
Sami Haddadin
24
5
0
16 Aug 2022
SPD domain-specific batch normalization to crack interpretable unsupervised domain adaptation in EEG
Reinmar J. Kobler
J. Hirayama
Qibin Zhao
M. Kawanabe
19
54
0
02 Jun 2022
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
38
17
0
25 Apr 2022
Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design
Xiran Fan
Chun-Hao Yang
B. Vemuri
42
18
0
03 Dec 2021
Riemannian Functional Map Synchronization for Probabilistic Partial Correspondence in Shape Networks
Faria Huq
Adrish Dey
Sahra Yusuf
Dena Bazazian
Tolga Birdal
Nina Miolane
51
1
0
29 Nov 2021
NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning
Buyun Liang
Tim Mitchell
Ju Sun
17
3
0
27 Nov 2021
Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels
Noémie Jaquier
Viacheslav Borovitskiy
A. Smolensky
Alexander Terenin
Tamim Asfour
Leonel Rozo
34
35
0
02 Nov 2021
Topologically Regularized Data Embeddings
R. Vandaele
Bo Kang
Jefrey Lijffijt
T. D. Bie
Yvan Saeys
21
9
0
18 Oct 2021
Simulation-based Bayesian inference for multi-fingered robotic grasping
Norman Marlier
O. Bruls
Gilles Louppe
35
6
0
29 Sep 2021
Nonlinear matrix recovery using optimization on the Grassmann manifold
Florentin Goyens
C. Cartis
Armin Eftekhari
29
6
0
13 Sep 2021
Interactive Dimensionality Reduction for Comparative Analysis
Takanori Fujiwara
Xinhai Wei
Jian Zhao
K. Ma
27
30
0
29 Jun 2021
Faster Randomized Methods for Orthogonality Constrained Problems
B. Shustin
H. Avron
24
2
0
22 Jun 2021
On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
29
38
0
01 Jun 2021
The Complex-Step Derivative Approximation on Matrix Lie Groups
C. C. Cossette
A. Walsh
James Richard Forbes
25
18
0
06 May 2021
A Riemannian Newton Trust-Region Method for Fitting Gaussian Mixture Models
L. Sembach
J. P. Burgard
Volker Schulz
24
3
0
30 Apr 2021
Manifold optimization for non-linear optimal transport problems
Bamdev Mishra
N. Satyadev
Hiroyuki Kasai
Pratik Jawanpuria
OT
14
10
0
01 Mar 2021
Bayesian Quadrature on Riemannian Data Manifolds
Christian Frohlich
A. Gessner
Philipp Hennig
Bernhard Schölkopf
Georgios Arvanitidis
29
4
0
12 Feb 2021
Operator-valued formulas for Riemannian Gradient and Hessian and families of tractable metrics
Du Nguyen
16
5
0
21 Sep 2020
Controlling for sparsity in sparse factor analysis models: adaptive latent feature sharing for piecewise linear dimensionality reduction
Adam Farooq
Yordan P. Raykov
P. Raykov
Max A. Little
13
0
0
22 Jun 2020
Learning Geometric Word Meta-Embeddings
Pratik Jawanpuria
N. Dev
Anoop Kunchukuttan
Bamdev Mishra
FedML
25
13
0
20 Apr 2020
Bayesian Optimization Meets Riemannian Manifolds in Robot Learning
Noémie Jaquier
Leonel Rozo
Sylvain Calinon
Mathias Bürger
17
53
0
11 Oct 2019
Coresets for Gaussian Mixture Models of Any Shape
Dan Feldman
Zahi Kfir
Xuan Wu
18
11
0
12 Jun 2019
McTorch, a manifold optimization library for deep learning
Mayank Meghwanshi
Pratik Jawanpuria
Anoop Kunchukuttan
Hiroyuki Kasai
Bamdev Mishra
AI4CE
28
41
0
03 Oct 2018
Learning Multilingual Word Embeddings in Latent Metric Space: A Geometric Approach
Pratik Jawanpuria
Arjun Balgovind
Anoop Kunchukuttan
Bamdev Mishra
35
77
0
27 Aug 2018
geomstats: a Python Package for Riemannian Geometry in Machine Learning
Nina Miolane
Johan Mathe
Claire Donnat
Mikael Jorda
Xavier Pennec
AI4CE
37
123
0
21 May 2018
Optimal projection of observations in a Bayesian setting
L. Giraldi
O. Maître
Ibrahim Hoteit
Omar Knio
30
8
0
19 Sep 2017
ManifoldOptim: An R Interface to the ROPTLIB Library for Riemannian Manifold Optimization
Sean Martin
Andrew M. Raim
Wen Huang
K. Adragni
16
13
0
12 Dec 2016
Wasserstein Discriminant Analysis
Rémi Flamary
Marco Cuturi
Nicolas Courty
A. Rakotomamonjy
20
100
0
29 Aug 2016
1
2
Next