ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2211.11891
8
1

A Bi-level Nonlinear Eigenvector Algorithm for Wasserstein Discriminant Analysis

21 November 2022
Dong Min Roh
Z. Bai
Ren-Cang Li
ArXivPDFHTML
Abstract

Much like the classical Fisher linear discriminant analysis (LDA), the recently proposed Wasserstein discriminant analysis (WDA) is a linear dimensionality reduction method that seeks a projection matrix to maximize the dispersion of different data classes and minimize the dispersion of same data classes via a bi-level optimization. In contrast to LDA, WDA can account for both global and local interconnections between data classes by using the underlying principles of optimal transport. In this paper, a bi-level nonlinear eigenvector algorithm (WDA-nepv) is presented to fully exploit the structures of the bi-level optimization of WDA. The inner level of WDA-nepv for computing the optimal transport matrices is formulated as an eigenvector-dependent nonlinear eigenvalue problem (NEPv), and meanwhile, the outer level for trace ratio optimizations is formulated as another NEPv. Both NEPvs can be computed efficiently under the self-consistent field (SCF) framework. WDA-nepv is derivative-free and surrogate-model-free when compared with existing algorithms. Convergence analysis of the proposed WDA-nepv justifies the utilization of the SCF for solving the bi-level optimization of WDA. Numerical experiments with synthetic and real-life datasets demonstrate the classification accuracy and scalability of WDA-nepv.

View on arXiv
Comments on this paper